Ir al contenido

Documat


Use of social network analysis for tax control in Spain

  • Ignacio González García [1] ; Alfonso Mateos [1] Árbol académico
    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

  • Localización: Hacienda Pública Española / Review of Public Economics, ISSN 0210-1173, Nº 239, 2021, págs. 159-197
  • Idioma: inglés
  • DOI: 10.7866/hpe-rpe.21.4.5
  • Títulos paralelos:
    • Uso del análisis de redes sociales para el control fiscal en España
  • Enlaces
  • Resumen
    • español

      La Agencia Tributaria española es un usuario experimentado de big data y ahora ha desplegado la red social herramientas de análisis (SNA). Las herramientas del SCN han dado lugar a un salto cualitativo en áreas tan amplias como la recaudación de impuestos, la aplicación, el control de personas con patrimonio neto muy elevado y el blanqueo de capitales. Este papel presenta un panorama completo de las diferentes líneas de investigación, estrategias y resultados de nueve proyectos en los últimos cinco años, incluidas las lecciones aprendidas.

      Presentamos las mejores prácticas en descubrimiento de patrones, las herramientas desarrolladas para el control de grandes fortunas y la estrategia desarrollada para crear un puente entre el conocimiento experto y las tecnologías SNA. Nosotros destacan los resultados de la investigación de entidades interpuestas utilizadas para canalizar la remuneración personal, estructuras societarias complejas y empresas opacas.

    • English

      The Spanish Tax Agency is an experienced user of big data and has now deployed social network analysis (SNA) tools. SNA tools have led to a qualitative leap in such wide-ranging areas as tax collection, enforcement, control of ultra-high-net-worth individuals, and money laundering. This paper presents a comprehensive overview of the different lines of research, strategies and results of nine projects over the last five years, including the lessons learned.

      We present the best practices in pattern discovery, the tools developed for the control of big fortunes and the strategy developed to create a bridge between expert knowledge and SNA technologies. We highlight the results of investigating interposed entities used to channel personal remuneration, complex corporate structures, and opaque companies.

  • Referencias bibliográficas
    • AEAT (2017), “Resolution of January 19th, 2017, of the General Directorate of the State Tax Agency approving the general guidelines of the...
    • AEAT (2018), “Resolution of January 8th, 2017, of the General Directorate of the State Tax Agency approving the general guidelines of the...
    • AEAT (2019), “Resolution of 11st January 2019 of the General Directorate of the State Agency for Tax Administration approving the general...
    • AEAT (2020), “Resolution of 21st January 2020 of the General Directorate of the State Agency for Tax Administration approving the general...
    • Agenzia delle entrate, https://www.agenziaentrate.gov.it/portale/documents/20143/234267/Analisi+2007+risk+analysis_risk_analysis_tax_evasion.pdf/c37eed28-601f-d836-6fb4-275cb36ab65d.
    • Akoglu L., McGlohon M. and Faloutsos, C. (2010), “OddBall: spotting anomalies in weighted graphs”, in: PAKDD, Hyderabad, 410-421.
    • Alesina, A. and Rodrik, D. (1994), “Distributive politics and economic growth” Quarterly Journal of Economics, 109: 465-490.
    • Alhajj. R. and Rokne, J. (Editors), (2018), “Encyclopedia of Social Networks: Analysis and Mining. Second edition”, Tang Jie entry “Inferring...
    • Andini, M., Ciani, E., Blasio, G., D’Ignazio, A. and Salvestrini, V., (2018), “Targeting with machine learning: An application to a tax rebate...
    • Atkinson, A. B. (2016), “Pareto and the upper tail of the income distribution in the UK: 1799 to the present”, Centre for Analysis of Social...
    • Baesen, B., Van Vlasselaer, V. and Verbecke, W. (2015), “Fraud analytics using predictive, and social network techniques. A guide to data...
    • Bandourian R., McDonald, J. B. and Turkey, R. S. (2003), “A comparison of parametric models of income distribution across countries and overtime”,...
    • Bao, W., Lianju, N. and Yue, K. (2019), “Integration of unsupervised and supervised machine learning algorithms for credit risk assessment”,...
    • Basta, S., Fassetti, F., Guarascio, M., Manco, G., Giannotti, F., Pedreschi, D., Spinsanti, L., Papi, G. and Pisani, S. (2009), “High quality...
    • Bank of Spain (2017a), “Survey of Household Finances”. Available online at https://www.bde.es/bde/en/areas/estadis/estadisticas-por/encuestas-hogar/relacionados...
    • Bank of Spain, (2017b), “Encuesta financiera de las familias (EFF) 2017: Métodos resultados y cambios desde 2014”. Available at: https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/Informes...
    • Beaverstock, J. and Faulconbridge, J. (2013), “Wealth segmentation and the mobilities of the superrich: A conceptual framework”, in: T. Birchnell...
    • Benhabib, J. and Bisin, A. (2016), “Skewed wealth distributions: Theory and empirics”, NBER Working Paper, 21924, National Bureau of Economic...
    • Bhattacharyya, S., Sanjeev, J. and Westland, C. (2011), “Data mining for credit card fraud: A comparative study”, Decision Support Systems,...
    • Bonchi, F., Giannotti, G., Mainetto, D. and Pedreschi (1999), “Using data mining techniques in fiscal fraud detection”, in: M. Mohania and...
    • Borgatti S. P. and Everett, M. G. (2006), “A graph theoretic perspective on centrality”, Soc Netw, 28: 466-484.
    • Bothorel, Cecile, Cruz, Juan David, Magnani, Matteo and Micenková, Barbora (2015), “Clustering attributed graphs: Models, measures...
    • Bouchaud, J. P. (2019), “Econophysics: Still fringe after 30 years?”, https://arxiv.org/abs/1901.03691v1. Bouyich, C. (2017), Social network...
    • Bright, D. A, Hughes, C. E. and Chalmers, J. (2012), “Illuminating dark networks: a social network analysis of an Australian drug trafficking...
    • Brindusa, A., Basso, H., Bover, O., Casado, J. M., Hospido, L., Izquierdo, M., Kataryniuk, I., Lacuesta, A., Montero, J. M. and Vozmediano,...
    • Castellón, P. and Velásquez, J. D. (2013), “Characterization and detection of taxpayers with false invoices using data mining techniques”,...
    • Chakrabarti, B., Chakraborti, A., Chakrabarty, S. and Chatterjee, A. (2013), Econophysics of Income and Wealth Distribution, U. K, Cambridge...
    • Chatterjee (2005), Econophysics of Wealth Distributions, (Ed.: A. Chatterjee, S. et al.), Italy, Milan, Springer-Verlag.
    • Chunaev, P. (2020), “Community detection in node-attributed social networks: A survey”, Computer Science Review, 37.
    • CIAT (2020), “Auditing with technological support, methods techniques and the experience of the Tax Administration of Spain”, in ICT as a...
    • Congressional Budget Office (2018), “The Distribution of Household Income, 2015”, November 8, https://www.cbo.gov/publication/54646.
    • Consejo General de Economistas (2017), “Reflexiones sobre el fraude fiscal y el problema de las estimaciones: 20 propuestas para reducirlo”,...
    • Credit Suisse (2015), Global Wealth Report. Electronic resource available: https.//publications.credit- suisse.com/tasks/render/file/?fileID=F2425415-DCA7-80B8-EAD89AF9341D47E.
    • Crivelli, E., Mooij, A. R. and Keen M. (2015), “Base Erosion, Profit Shifting and Developing Countries”, IMF Working Paper 15/118, Fondo Monetario...
    • Durán-Cabré, J. M., Esteller Moré, A., Mas-Montserrat, M. and Salvadori, L. (2019), “The tax gap as a public management instrument: application...
    • El-Moussaqui, M., Agouti, T., Tikniouine, A. and El Adnani, M. (2019), “A comprehensive literature review on community detection: Approaches...
    • Eslam, E., Pourdarab, S. and Nadali, A. (2011), “Credit Risk Assessment of Bank Customers using DEMTAEL and Fuzzy Expert Systems”, International...
    • EUROSOCIAL (2016), “Herramientas de Análisis de Información de la AEAT” https://es.slideshare.net/EUROsocial-II/herramientas-de-anlisis-de-la-informacin-de-la-aeat-zujar-agencia-estatal-de-administracion-tributaria-aeat-espaa.
    • Europa Press (2017), “Hacienda desmantela una trama de IVA que ha defraudado más de 25 millones de euros”. Available at http://www.hoy.es/nacional/201706/01/hacienda-desmantela-trama-20170601140141-ntrc-rc.html#ns_campaign=rrsshoy&ns_mchannel=hoy-es&ns_source=fb&ns_linkname=nacional_14.
    • FATF (2006), “APG Trade Based Money Laundering Report”. Downloadable at http://www.fatf-gafi.org/publications/methodsandtrends/?hf=10&b=0&s=desc(fatf_releasedate).
    • FISCALIS (2018), The concept of Tax Gaps Report III: MTIC Fraud Gap estimation methodologies, Directorate-General for Taxation and Customs...
    • Furth, B., (2010), Handbook of Social Network Technologies and Applications, Springer.
    • Glancy, F. H. and Yadav, S. B. (2011), “A computational model for financial reporting fraud detection”, Decision Support Systems, 50(3): 595-601.
    • Goldberg. A. V. and Tarjan, R. E. (1988), “A new approach to the maximum flow problem”, Journal of the ACM, 35(4): 921. DOI: 10.1145/48014.61051.
    • González, I. and Mateos, A. (2018a), “Social Network Analysis tools in the Fight Against Fiscal Fraud and Money Laundering”, Proceedings of...
    • González, I. and Mateos, A. (2018b), “K-graph and highly community detection in graphs”, Proceedings of the 15TH International Conference...
    • González, I. and Mateos, A. (2018c), “The distribution of wealth. Deconstructed Pareto, Reconstructed Gibrat”, Journal of Applied Economics,...
    • González, I. and Mateos A. (2020), “Bayesian Dialysis of the Evidence in Fraud Detection”, Proceedings of the ConferenceDECON 2020, Springer.
    • Hagen, L., Keller, T. E, Yerden, X. and Luna-Reyes L. P. (2019), “Open data visualizations and analytics as tools for policy-making”, Government...
    • Hay, I. and Muller, S. (2012), “That tiny, stratospheric apex that owns most of the world”, Exploring geographies of the superrich. Geographical...
    • Hernández, E. (2014), El fin de la clase media, Madrid: clave intellectual.
    • Hospido, L. (2010), “La encuesta financiera de las familias (EFF): La experiencia española y el proyecto europeo”. Día Mundial de la Estadística....
    • Kiraly, Z. and Kovacs, P. (2012). “Efficient implementation of minimum-cost flow algorithms”, Acta Universitatis Sapientiae, Informatica,...
    • Kruppa, J., Schwarz, A., Arminger, G. and Ziegler, A. (2013), “Consumer credit risk: Individual probability estimates using machine learning”,...
    • Lismont, J., Cardinaels, E., Bryuynseels, L., Groote, S., Baesens, B., Llemahieu, W. and Vanthienen, J. (2018), “Predicting tax avoidance...
    • Luque, V. (2015), “A propósito de Piketty: evolución de la desigualdad en España”, Papeles de Europa, 28(1): 86-115. Mantegna, R. N. and...
    • Mas, M. (2020), Essays on Wealth Taxation, Avoidance and Evasion among the Rich, PhD Thesis, Universitat de Barcelona, Facultat...
    • Matos, T., Macedo, J. A., Lettich, F., Monteiro, J. M., Renso, Ch., Perego, R. and Nardini, F. M. (2020), “Leveraging feature selection to...
    • Montroll, E. W. and Schelesinger, M. F. (1982), “On 1/f noise and other distributions with long tails”, Proceedings of the National Academy...
    • Murphy, R. (2012), “Closing the European Tax Gap. A report for Group of the Progressive Alliance of Socialists & Democrats in the European...
    • Murphy, R. and Petersen, H. (2018), Minding the tax gap at the heart of macroeconomic policy, London: HYPERLINK “http://Coffers.eu” Coffers.eu...
    • Murthy, S. K. (1998), “Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey”, Data Mining and Knowledge Discovery,...
    • Ngai, E., Hu, Y., Wong, Y., Chen,Y. and Sun, X. (2011), “The application of data mining techniques in financial fraud detection: A classification...
    • OECD (2002), Measuring the Non-Observed Economy. A Handbook, OECD, Paris.
    • OECD (2016), Pensions Markets In Focus, OECD. Available at: http://www.oecd.org/daf/fin/private pensions/Pension-Markets-in-Focus-2016.pdf.
    • OXFAM (2018), “Fact or Fiction? Economic Recovery, in the Hands of a Minority”. Available online at: https://www.diarioabierto.es/wp-content/uploads/2018/01/Report_DavosEnglish_Spanish_NonDenominational.pdf.
    • Papadimitriou, Ch. H. and Steiglitz, K. (1998), “The Max Flow, Min Cut Theorem. Combinatorial Optimization: Algorithms and Complexity”, Dover:...
    • Papadopoulos, S., Kompatsiaris, Y., Vakali, A. and Spyridonos, P. (2012), “Community detection in social media”, Data Mining Knowledge Discov,...
    • Persson, T. and Tabellini, G. (1994), “Is inequality harmful for growth? Theory and evidence”, American Economic Review, 48: 600-621.
    • Phua, C., Lee, V., Smith, K. and Gayler, R. (2010), “A comprehensive survey of data mining-based fraud detection research”, arXiv:1009.6119.
    • Piketty, T. (2013), Capital in the Twenty-First Century, Harvard University Press.
    • Piketty, T., Saez, E. and Zucman, G. (2018), “Distributional National Accounts: Methods and Estimates for the United States”, Quarterly Journal...
    • Pourhabibi, T., Ong, K. L., Kam, B. H. and Ling, Y. (2020), “Fraud detection: A systematic literature review of graph-based anomaly detection...
    • Pow, C. (2011), “Living it up: Super-rich enclave and transnational elite urbanism in Singapore” Geo- foru: 382-393.
    • PwC (2018), “The Data Intelligent Tax Administration Meeting the challenges of Big Tax Data and Analytics”, https://www.pwc.nl/nl/assets/documents/the-data-intelligent-tax-administration-whitepaper.pdf.
    • Rukanova, B., Tan, Yao-Hua, Slegt, M., Molenhuis, M., Ben van Rijnsoever and Migeotte, J. (2020), “Identifying the value of data analytics...
    • Saez, E. (2018), “Striking it Richer: The Evolution of Top Incomes in the United States,” University of California, https://eml.berkeley.edu/~saez/saez-UStopincomes-2017.pdf.
    • Saez, E. and Zucman, G. (2016), “Wealth Inequality in the United States since 1913: Evidence from Capitalized Income Tax Data,” Quarterly...
    • Santarelli, E. and Thurick, R. (2006), “Gibrat’s Law: An overview of the Empiric Literature”. DOI: 10.1007/0-387-32314-7_3.
    • Schneider, F. and Enste, D. (2000), “Shadow economies: Size, causes and consequences”, Journal of Economic Literature, XXXVIII: 77-114.
    • Schneider, F., Buehn, A. and Montenegro, C. (2010), “New Estimates for the Shadow Economies all over the World”, International Economic Journal,...
    • Serraler, M. (2018), “The Treasury will investigate with ‘big data’ the assets of more than 10 million euros”, Expansion, December 26th.
    • Titan, Abo Akademy University (2012), Online Tähtinen, 40-53, pp. 65-67.
    • Vaquero, A., Lago, S. and Fernández, X. (2016), “Economía Sumergida y Fraude Fiscal en España: Un Análisis de la Evidencia Empírica”, (https://researchgate.net/publication/296332354).
    • Van Vlasselaer, V., Eliassi-Rad, T., Akoglue, L., Snoeck, M. and Baesens, B. (2017), “GOTCHA! Network-based Fraud Detection for Social Security...
    • Vanhoeyveld, J., Martens, D. and Peeters. B. (2019), “Customs fraud detection: Assessing the value of behavioural and high-cardinality data...
    • Vasudevan, M., Balakrishnan, H. and Deo, N. (2009), “Community discovery algorithms: an over- view”, Congressus Numerantium, 196:...
    • Vasudevan, M., Balakrishnan, H. and Deo, N. (2009), “Community discovery algorithms: an over- view”, in Allajh, R. and Rokne, J....
    • Vasudevan, M. and Deo, N. (2018), “Detecting and Identifying Communities in Dynamic and and Complex Networks: Definition and Survey”, Encyclopedia...
    • Vydra, S. and Klievink, B. (2019), “Techno-optimism and policy-pessimism in the public sector big data debate”, Government Information Quarterly,...
    • Wasserman, S. and Faust, K. (1994), Social Network Analysis: methods and applications, Cambridge University Press, Cambridge/New York.
    • West, J. and Bhattacharya, M. (2016), “Intelligent financial fraud detection: A comprehensive review, Comput. ‘I&’ Secur. 57 (Supplement...
    • Woods, A. J. (2017), “Applications of Flow Network Models in Finance”, Electronic Theses and Dissertations, 1645. https://digitalcommons.georgiasouthern.edu/etd/1645.
    • Xu, J. and Chen, H. (2005) “Criminal network analysis and visualization”, Commun ACM, 48(6):101-107.
    • Yakovenko, V. M., Barkley, and Rosser, J. (2009), “Colloquium: statistical mechanics of money wealth and income”, Review of Modern Physics,...
    • Yedidia, J. S., Freeman, W. T. and Weiss, Y. (2003), “Understanding belief propagation and its gene- ralizations”, in: Exploring artificial...
    • Zachary, W. W. (1977), “An information flow model for conflict and fission in small groups”, Journal of Anthropological Research, 33: 452-473.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno