Ir al contenido

Documat


Buried Julia Components and Julia Sets

  • Wang, Youming [1] ; Zhan, Guoping [2] ; Liao, Liangwen [3]
    1. [1] Hunan Agricultural University

      Hunan Agricultural University

      China

    2. [2] Zhejiang University of Technology

      Zhejiang University of Technology

      China

    3. [3] Nanjing University

      Nanjing University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let f be a hyperbolic rational map with degree d≥2 whose Julia set is connected. We give an elementary approach to prove that there exists a rational map g with degree ≤7d−2 such that g contains a buried Julia component which is homeomorphic to the Julia set of f.

  • Referencias bibliográficas
    • 1. McMullen, C.T.: Automorphisms of rational maps. Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), 31-60, Math. Sci. Res. Inst....
    • 2. Devaney, R.L., Look, D.M., Uminsky, D.: The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54(6), 1621–1634...
    • 3. Xiao, Y., Qiu, W., Yin, Y.: On the dynamics of generalized McMullen maps. Ergodic Theory Dynam. Syst. 34(6), 2093–2112 (2014)
    • 4. Pilgrim, K., Tan, L.: Rational maps with disconnected Julia set. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque No....
    • 5. Qiao, J.: The buried points on the Julia sets of rational and entire functions. Sci. China Ser. A. 38(12), 1409–1419 (1995)
    • 6. Blanchard, P., Devaney, R.L., Garijo, A., Russell, E.D.: A generalized version of the McMullen domain. Internat J. Bifur Chaos Appl. Sci....
    • 7. Godillon, S.: A family of rational maps with buried Julia components. Ergodic Theory Dynam. Syst. 35(6), 1846–1879 (2015)
    • 8. Wang, Y., Yang, F.: Julia sets as buried Julia components. Trans. Am. Math. Soc. 373(10), 7287–7326 (2020)
    • 9. Shishikura, M.: On the quasiconformal surgery of rational functions. Ann. Sci. École Norm. Sup. 20(4), 1–29 (1987)
    • 10. Beardon, A.F.: Iteration of rational functions. Complex analytic dynamical systems. Graduate Texts in Mathematics. 132, Springer-Verlag,...
    • 11. Garijo, A., Marotta, S.M., Russell, E.D.: Singular perturbations in the quadratic family with multiple poles. J. Difference Equ. Appl....
    • 12. Milnor, J: Dynamics in one complex variable: Third Edition. Annals of Mathematics Studies, Princeton Univ Press, Princeton (2006)
    • 13. Mañé, R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. École Norm. Sup. 16(2), 193–217 (1983)
    • 14. McMullen, C.T.: Complex dynamics and renormalization. Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno