Ir al contenido

Documat


Controllability of impulsive neutral stochastic integro-differential systems driven by fractional Brownian motion with delay and Poisson jumps

  • Benkabdi, Youssef [1] ; El Hassan, Lakhel [1]
    1. [1] Cadi Ayyad University

      Cadi Ayyad University

      Marrakech-Medina, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 6, 2021, págs. 1521-1545
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4596
  • Enlaces
  • Resumen
    • In this paper the controllability of a class of impulsive neutral stochastic integro-differential systems driven by fractional Brownian motion and Poisson process in a separable Hilbert space with infinite delay is studied. The controllability result is obtained by using stochastic analysis and a fixed-point strategy. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained result.

  • Referencias bibliográficas
    • N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, 2nd ed. Amsterdam: North-Holland, 1989. https://doi.org/fj5j3c
    • J. A. Goldstein, Semigroups of linear operators & applications. Mineola, NY: Dover, 1985.
    • J. Klamka, “Stochastic controllability of linear systems with delay in control”, Bulletin of the Polish Academy of Sciences: Technical Sciences,...
    • J. Klamka, “Controllability of dynamical systems. A survey”, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 61, no....
    • Y. Ren, Q. Zhou, and L. Chen, “Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with...
    • Y. Ren and R. Sakthivel, “Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic evolution equations with...
    • T. Caraballo, M. J. Garrido-Atienza, and T. Taniguchi, “The existence and exponential behavior of solutions to stochastic delay evolution...
    • D. Nualart, The Malliavin calculus and related topics, 2nd ed. Berlin: Springer, 2006.
    • A. Pazy, Semigroups of linear operators and applications to partial differential equations. New York, NY: Springer, 1983.
    • Y. Ren, X. Cheng and R. Sakthivel, “On time-dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space...
    • R. Sakthivel, R. Ganesh, Y. Ren, and S. M. Anthoni, “Approximate control- lability of nonlinear fractional dynamical systems”, Communications...
    • R. Sakthivel and J.W. Luo. “Asymptotic stability of impulsive stochastic partial differential equations”, Statistics & probability letters,...
    • R. Sakthivel, Y. Ren, A. Debbouche, and N. I. Mahmudov, “Approximate controllability of fractional stochastic differential inclusions with...
    • M. Röckner and T. Zhang, “Stochastic evolution equation of jump type: Existence, uniqueness and large deviation principles”, Potential analysis,...
    • T. Taniguchi and J. Luo, “The existence and asymptotic behaviour of mild solutions to stochastic evolution equations with infinite delays driven...
    • B. Boufoussi and S. Hajji, “Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space”,...
    • B. Boufoussi and S. Hajji, “Successive approximation of neutral functional stochastic differential equations with jumps”, Statistics &...
    • E. H. Lakhel and S. Hajji, “Neutral stochastic functional differential equation driven by fractional Brownian motion and Poisson point processes”,...
    • E. H. Lakhel, “Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson...
    • A. Anguraj, K. Ravikumar, and D. Baleanu, “Approximate controllability of a semilinear impulsive stochastic system with nonlocal conditions...
    • J.K. Hale and J. Kato, “Phase spaces for retarded equations with infinite delay”, Funkcialaj ekvacioj, vol. 21, pp. 11-41, 1978.
    • Y. Hino, S. Murakami, and T. Naito, Functional differential equations with infinite delay. Berlin: Springer, 1991.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno