Ir al contenido

Documat


Median bilinear models in presence of extreme values

  • Miguel Santolino [1]
    1. [1] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 45, Nº. 2, 2021, págs. 163-180
  • Idioma: inglés
  • DOI: 10.2436/20.8080.02.114
  • Enlaces
  • Resumen
    • Bilinear regression models involving a nonlinear interaction term are applied in many fields (e.g., Goodman’s RC model, Lee-Carter mortality model or CAPM financial model). In many of these contexts data often exhibit extreme values. We propose the use of bilinear models to estimate the median of the conditional distribution in the presence of extreme values. The aim of this paper is to provide alternative methods to estimate median bilinear models. A calibration strategy based on an iterative estimation process of a sequence of median linear regression is developed. Mean and median bilinear models are compared in two applications with extreme observations. The first application deals with simulated data. The second application refers to Spanish mortality data involving years with atypical high mortality (Spanish flu, civil war and HIV/AIDS). The performance of the median bilinear model was superior to that of the mean bilinear model. Median bilinear models may be a good alternative to mean bilinear models in the presence of extreme values when the centre of the conditional distribution is of interest.

  • Referencias bibliográficas
    • Anderson, J.A. (1984). Regression and ordered categorical variables (with Discussion). Journal of the Royal Statistical Society. Series B...
    • Atance, D., Debón, A., and Navarro, E. (2020) A comparison of forecasting mortality models using resampling methods. Mathematics, 8, 1550.
    • Bassett, G. and Koenker, R. (1978). Theory of least absolute error regression. Journal of the American Statistical Association, 73, 618–622.
    • Black, F., Jensen, M.C. and Scholes, M. (1972). The capital asset pricing model: some empirical tests. Studies in the theory of capital markets,...
    • Brouhns, N., Denuit, M., and Vermunt, J. (2002). A Poisson log-bilinear regression approach to the construction of projected life table. Insurance:...
    • Buchinsky, M. (1995). Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study. Journal of Econometrics,...
    • Carreras, A. and Tafunell, X.(2005). Estadı́sticas Hist´ na: siglos XIX-XX.oricas de Espa˜ Fundación BBVA, 2a Edic., Bilbao.
    • CNE (2011). Area de vigilancia de VIH y conductas de riesgo. Mortalidad por VIH/Sida en Espa˜ no 2009. Evoluci´ Centro Nacional de Epimediologı́a,na,...
    • Croux, C., Filzmoser, P., Pison, G. and Rousseeuw, P.J. (2003). Fitting multiplicative models by robust alternating regressions. Statistics...
    • Denis, J.B. and Pázman, A.(1999). Bias of LS estimators in nonlinear regression models with constraints. Part II: Biadditive models. Applications...
    • Dutang, C. (2017). Some explanations about the IWLS algorithm to ft generalized linear models. Technical report, hal-01577698.
    • El-Attar, R. A., Vidyasagar, M., and Dutta, S. R. K. (1979). An Algorithm for l1-norm minimization with application to nonlinear l1-approximation....
    • Emerson, J.D. and Hoaglin. D.C. (1983). Analysis of two-way tables by medians. In D. C. Hoaglin, F. Mosteller and J. W. Tukey (Eds.), Understanding...
    • Erikson, R. and Goldthorpe, J.H. (1992). The Constant Flux: A Study of Class Mobility in Industrial Societies. Oxford: Clarendon Press. .Ch....
    • FMBM (2021). Fitting Median Bilinear Model. Available at https://github.com/ msantolino/Median-Bilinear-Models. Accessed 8 November 2021.
    • Gabriel, K.R. (1978). Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society....
    • Gabriel, K. R. and Odoroff, L. (1984). Resistant lower rank approximation of matrices. In E. Diday, M. Jambu, L. Lebart, J. Pages and R. Tomassone...
    • Goodman, L.A. (1979). Simple models for the analysis of association in crossclassifcations having ordered categories. Journal of the American...
    • Goodman, L.A. (1981). Association models and canonical correlation in the analysis of crossclassifcations having ordered categories. Journal...
    • Hawkins, D.M. (1980). Identifcation of outliers. Monographs on applied probability and statistics, Chapman & Hall.
    • HMD (2020). Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany)....
    • Jiménez Lucena, I. (1994). El tifus exantemático de la posguerra española (1939–1943): el uso de una enfermedad colectiva en la legitimación...
    • Justel, A., Peña, D. and Tay, R.S (2001). Detection of outlier patches in autoregressive time series. Statistica Sinica, 11, 651–673.
    • Koenker, R. (2019). quantreg: Quantile regression. R package version 5.42.
    • Koenker, R. (2020). Non linear quantile regression. http://www.econ.uiuc.edu/∼roger/ research/nlrq/nlrq.html, Accessed 16 February 2021.
    • Koenker, R. and Park, B. J. (1996). An interior point algorithm for nonlinear quantile regression. Journal of Econometrics, 71, 265–283.
    • Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U. S. mortality. Journal of the American Statistical Association, 87, 659–671.
    • Machado, J. and Silva, J. S. (2011). MSS: Stata module to perform heteroskedasticity test for quantile and OLS regressions. Statistical Software...
    • Macias, Y. and Santolino, M. (2018). Application of Lee-Carter and Renshaw-Haberman models in life insurance products. Anales del Instituto...
    • Mehrotra, S. (1992). On the implementation of a primal−dual interior point method. SIAM Journal on Optimization, 2, 575–601.
    • Moyano-Silva, P.A., Perez-Mar´ ı́n, A.M. and Santolino, M. (2020). Estimation of stochastic mortality models for Chile. Anales del Instituto...
    • Portnoy, S. and Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators....
    • R Core Team, (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
    • Renshaw, A. and Haberman, S. (2006). A cohort-based extension to the Lee-Carter model for mortality Reduction Factors. Insurance: Mathematics...
    • Robine, J.M, Crimmins, E.M, Horiuchi S. and Zeng Yi, Z.(2007). Human Longevity, Individual Life Duration, and the Growth of the Oldest-Old...
    • Salahi, M., Peng, J. and Terlaky, T. (2008) On Mehrotra-type predictor-corrector algorithms. SIAM Journal on Optimization, 18, 1377–1397.
    • Sánchez, B., Labros, H. and Labra, V. (2013). Likelihood based inference for quantile regression using the asymmetric Laplace distribution....
    • Santolino, M. (2020). The Lee-Carter quantile mortality model. Scandinavian Actuarial Journal, 7, 614–633
    • Turner, H. and Firth, D. (2018). Generalized nonlinear models in R: an overview of the gnm package. R package version 1.1-0.
    • Turner, H., Firth, D. and Kosmidis, I. (2013). Generalized nonlinear models in R. 6th International Conference of the ERCIM WG on Computational...
    • Van Eeuwijk, Fred A. (1992). Multiplicative models for genotype-environment interaction in plant breeding. Statistica Applicata, 4, 393–406.
    • Van Eeuwijk, Fred A. (1995). Multiplicative interaction in generalized linear models. Biometrics , 51, 1017–032.
    • Wilmoth, J. (1993). Computational Methods for Fitting and Extrapolating the LeeCarter Model of Mortality Change. Technical Report. Department...
    • Xie, Y. (1992). The log-multiplicative layer effect model for comparing mobility tables. American Sociological Review, 57, 380–395.
    • Yates, F. and Cochran, W.G. (1938). The analysis of groups of experiments. The Journal of Agricultural Science, 28, 556–580.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno