Ir al contenido

Documat


Optimizing household energy planning in smart cities: A multiobjective approach

  • Sergio Nesmachnow [1] ; Giovanni Colacurcio [1] ; Diego Gabriel Rossit [2] ; Jamal Toutouh [3] ; Francisco Luna
    1. [1] Universidad de la República

      Universidad de la República

      Uruguay

    2. [2] Universidad Nacional del Sur

      Universidad Nacional del Sur

      Argentina

    3. [3] Massachusetts Institute of Technology

      Massachusetts Institute of Technology

      City of Cambridge, Estados Unidos

    4. [4] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

  • Localización: Revista Facultad de Ingeniería: Universidad de Antioquia, ISSN-e 2422-2844, ISSN 0120-6230, Nº. 101, 2021, págs. 8-19
  • Idioma: inglés
  • DOI: 10.17533/udea.redin.20200587
  • Títulos paralelos:
    • Optimización de la planificación energética en hogares inteligentes: Un enfoque multi-objetivo
  • Enlaces
  • Resumen
    • español

      Este artículo presenta los avances en el diseño e implementación de un sistema de recomendación para planificar el uso de electrodomésticos, enfocado en mejorar la eficiencia energética desde el punto de vista tanto de las compañías de energía como de los usuarios finales. El sistema propone el uso de información histórica y datos de sensores para definir instancias del problema de planificación considerando las preferencias del usuario, que a su vez se proponen resolver mediante un enfoque evolutivo multiobjetivo, para minimizar el consumo de energía y maximizar la calidad del servicio ofrecido a los usuarios. Se informan resultados prometedores en casos realistas del problema, en comparación con situaciones en las que no se utiliza una planificación energética inteligente (es decir, modelo ‘Bussiness as Usual’) y también con un algoritmo goloso desarrollado en el marco del proyecto de referencia. El enfoque evolutivo propuesto fue capaz de mejorar hasta el 29.0 % en la utilización de energía y hasta el 65,3 % en las preferencias del usuario sobre los métodos de referencia.

    • English

      This article presents the advances in the design and implementation of a recommendation system for planning the use of household appliances, focused on improving energy efficiency from the point of view of both energy companies and end-users. The system proposes using historical information and data from sensors to define instances of the planning problem considering user preferences, which in turn are proposed to be solved using a multiobjective evolutionary approach, in order to minimize energy consumption and maximize quality of service offered to users. Promising results are reported on realistic instances of the problem, compared with situations where no intelligent energy planning are used (i.e., ‘Bussiness as Usual’ model) and also with a greedy algorithm developed in the framework of the reference project. The proposed evolutionary approach was able to improve up to 29.0% in energy utilization and up to 65,3% in user preferences over the reference methods.

  • Referencias bibliográficas
    • 1]W. Turner and S. Doty,Energymanagementhandbook. The FairmontPress, 2007.
    • [2]A. Soares, A. Gomes, C. Antunes, and H. Cardoso, “Domestic loadscheduling using genetic algorithms,” in European Conference on the Applications...
    • [3] A. Soares, C. Antunes, C. Oliveira, and A. Gomes, “A multiobjective genetic approach to domestic load scheduling in an energy management...
    • [4] M. Deakin and H. Al Waer, “From intelligent to smart cities,” Intelligent Buildings International, vol. 3, no. 3, July 2011. [Online]....
    • [5] (2019) Energy use in homes. U.S. Energy Information Administration (EIA). Accessed Nov. 2019. [Online]. Available: https://bit.ly/2YjN5NG...
    • [6] (2019) Energy consumption in households. Eurostat Statistic Explained. Accessed Nov. 2019. [Online]. Available: https://bit.ly/2APLx63
    • [7] G. Colacurcio, S. Nesmachnow, J. Toutouh, F. Luna, and D. G. Rossit, “Multiobjective household energy planning using evolutionary algorithms,”...
    • [8] E. Luján and et al., “Cloud computing for smart energy management (CC-SEM Project),” in Ibero-American Congress on Information Management...
    • [9] E. Luján and et al., “An integrated platform for smart energy management: the CC-SEM project,” Revista Facultad de Ingeniería Universidad...
    • [10] I. S. Bayram and T. S. Ustun, “A survey on behind the meter energy management systems in smart grid,” Renewable and Sustainable Energy...
    • [11] S. Nesmachnow, S. Baña, and R. Massobrio, “A distributed platform for big data analysis in smart cities: combining intelligent transportation...
    • [12] J. Kolter and M. Johnson, “Redd: A public data set for energy disaggregation research,” in Workshop on Data Mining Applications in Sustainability,...
    • [13] J. Chavat, J. Graneri, and S. Nesmachnow, “Energy disaggregation of household appliances based on pattern consumption similarities,”...
    • [14] F. Glover, “An improved MIP formulation for products of discrete and continuous variables,” Journal of Information and Optimization Sciences,...
    • [15] A. Soares, A. Gomes, and C. H. Antunes, “Categorization of residential electricity consumption as a basis for the assessment of the impacts...
    • [16] E. Orsi and S. Nesmachnow, “Smart home energy planning using IoT and the cloud,” in IEEE URUCON, Montevideo, Uruguay, 2017.
    • [17] H. Bilil, G. Aniba, and H. Gharavi, “Dynamic appliances scheduling in collaborative microgrids system,” IEEE Transactions on Power Systems,...
    • [18] Z. W. Geem and Y. Yoon, “Harmony search optimization of renewable energy charging with energy storage system,” International Journal...
    • [19] A. Barbato and A. Capone, “Optimization models and methods for demand-side management of residential users: A survey,” Energies, vol....
    • [20] X. Guan, Z. Xu, and Q. S. Jia, “Energy-efficient buildings facilitated by microgrid,” IEEE Transactions on smart grid, vol. 1, no. 3,...
    • [21] A. Barbato, A. Capone, L. Chen, F. Martignon, and S. Paris, “A distributed demand-side management framework for the smart grid,” Computer...
    • [22] S. Nesmachnow, “An overview of metaheuristics: accurate and efficient methods for optimisation,” International Journal of Metaheuristics,...
    • [23] Nesmachnow, S., “Computación científica de alto desempeño en la facultad de ingeniería, universidad de la república,” Revista de la Asociación...
    • [24] L. A. Wolsey and G. L. Nemhauser, Integer and combinatorial optimization. Hoboken, NJ, USA: John Wiley & Sons, 2014.
    • [25] Gurobi optimizer reference manual. Gurobi Optimization. Accessed Jun. 12, 2020. [Online]. Available: https://bit.ly/3hqg1wd
    • [26] W. E. Hart and et al., Pyomo-optimization modeling in python, 2nd ed. Berlin, Germany: Springer Science & Business Media, 2017.
    • [27] G. Colacurcio, “Algoritmos evolutivos para la planificación de eficiencia energética en hogares,” undergraduate thesis, Faculty of Engineering,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno