Ir al contenido

Documat


On the Generalized Normal Form of ODE Systems

  • Bruno, Alexander D. [1]
    1. [1] Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Firstly I remind the normal form of an analytic autonomous ODE system near its stationary point and some its properties. Then I propose a generalization, which works near infinities in some coordinates and can be reduced to a system of lower order without linear part. A very simple example is considered.

  • Referencias bibliográficas
    • 1. Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Springer, Berlin, Heidelberg, New York, London Paris, Tokyo (1989)
    • 2. Bruno, A.D.: The asymptotic behavior of solutions of nonlinear systems of differential equations. Soviet Math. Dokl. 3, 464–467 (1962)
    • 3. Bruno, A.D.: Normal form of differential equations. Soviet Math. Dokl. 5, 1105–1108 (1964)
    • 4. Sadov, S.Y.: Normal form of the equation of oscillations of a satellite in a singular case. Math. Notes 58(5), 1234–1237 (1995)
    • 5. Sadov, S.Y.: Singular normal form for a quasilinear ordinary differential equations. Nonlinear Anal. 30(8), 4973–4978 (1997)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno