Ir al contenido

Documat


Spatial Relative Equilibria and Periodic Solutions of the Coulomb (n+1)-Body Problem

  • Constantineau, Kevin [1] ; García-Azpeitia, Carlos [2] ; Lessard, Jean-Philippe [1]
    1. [1] McGill University

      McGill University

      Canadá

    2. [2] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study a classical model for the atom that considers the movement of n charged particles of charge −1 (electrons) interacting with a fixed nucleus of charge μ>0. We show that two global branches of spatial relative equilibria bifurcate from the n-polygonal relative equilibrium for each critical value μ=sk for k∈[2,…,n/2]. In these solutions, the n charges form n/h-groups of regular h-polygons in space, where h is the greatest common divisor of k and n. Furthermore, each spatial relative equilibrium has a global branch of relative periodic solutions for each normal frequency satisfying some nonresonant condition. We obtain computer-assisted proofs of existence of several spatial relative equilibria on global branches away from the n-polygonal relative equilibrium. Moreover, the nonresonant condition of the normal frequencies for some spatial relative equilibria is verified rigorously using computer-assisted proofs.

  • Referencias bibliográficas
    • 1. Alfaro Aguilar, F., Pérez-Chavela, E.: Relative equilibria in the charged n-body problem. Can. Appl. Math. Q. 10(01), 1–13 (2002)
    • 2. Balázs, I., van den Berg, J.B., Courtois, J., Dudás, J., Lessard, J.-P., Vörös-Kiss, A., Williams, J.F., Yuan, Y.X.: Computer-assisted...
    • 3. Castelli, R., Lessard, J.-P.: A method to rigorously enclose eigenpairs of complex interval matrices. In Applications of mathematics 2013....
    • 4. Davies, I., Truman, A., Williams, D.: Classical periodic solution of the equal-mass 2n-body problem, 2n-ion problem and the n-electron...
    • 5. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)
    • 6. Fenucci, M., Jorba, À.: Braids with the symmetries of Platonic polyhedra in the Coulomb (N +1)-body problem. Commun. Nonlinear Sci....
    • 7. García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ....
    • 8. García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the...
    • 9. Hungria, A., Lessard, J.-P., James, J.D.M.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach....
    • 10. Ize, J., Vignoli, A.: Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications, vol. 8. Walter de Gruyter &...
    • 11. Keller, H.B.: Lectures on numerical methods in bifurcation problems, volume 79 of Tata Institute of Fundamental Research Lectures on Mathematics...
    • 12. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Comput. (Arch. Elektron. Rechnen) 4, 187–201 (1969)
    • 13. LaFave, Tim: Correspondences between the classical electrostatic thomson problem and atomic electronic structure. J. Electrostat. 71(6),...
    • 14. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Applied Mathematical Sciences, vol. 90....
    • 15. Moeckel, R.: On central configurations. Mathematische Zeitschrift 205(1), 499–517 (1990)
    • 16. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26(4), 978–998 (1995)
    • 17. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4), 611–615 (1977)
    • 18. Moore, R.E.: Interval Analysis. Prentice-Hall Inc, Englewood Cliffs (1966)
    • 19. Muñoz Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian...
    • 20. Rump, S.M.: INTLAB - INTerval LABoratory. In: Tibor C (ed), Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno