Ir al contenido

Documat


Two Weighted Norm Dynamic Inequalities with Applications on Second Order Half-Linear Dynamic Equations

  • Saker, Samir H. [1] ; Osman, Mahmoud M. [3] ; Anderson, Douglas R. [2]
    1. [1] Mansoura University

      Mansoura University

      Egipto

    2. [2] Concordia College

      Concordia College

      City of Moorhead, Estados Unidos

    3. [3] New Mansoura University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we prove some new characterizations of two weighted functions u and v in norm inequalities of Hardy’s type, in the context of dynamic inequalities on time scales T. These norm inequalities studied the boundedness of the operator of Hardy’s type between the weighted spaces Lpv(T) and Lqu(T). The paper covers the different cases when 1

  • Referencias bibliográficas
    • 1. Hardy, G.H.: Note on a theorem of Hilbert. Math. Zeitschrift 6, 314–317 (1920)
    • 2. Hardy, G.H.: Notes on some points in the integral calculus (LX): an inequality between integrals. Mess. Math. 54, 150–156 (1925)
    • 3. Andersen, K.F., Heinig, H.P.: Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal. 14, 834–844 (1983)
    • 4. Bessack, P.R., Heinig, H.P.: Hardy’s inequalities with indices less than 1. Proc. Am. Math. Soc. 83, 532–536 (1981)
    • 5. Bradley, J.S.: Hardy inequalities with mixed norms. Can. Math. Bull. 21, 405–408 (1978)
    • 6. Heinig, H.P.: Weighted norm inequalities for certain integral operators II. Proc. Am. Math. Soc. 95(3), 387–395 (1985)
    • 7. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)
    • 8. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)
    • 9. Persson, L.-E., Stepanov, V.D.: Weighted integral inequalities with the geometric mean operator. J. Inequal. Appl. 7, 727–746 (2002)
    • 10. Sinnamon, G., Stepanov, V.D.: The weighted Hardy inequality: new proofs and the case p = 1. J. Lond. Math. Soc. 54, 89–101 (1996)
    • 11. Hardy, G.H.: Notes on some points in the integral calculus (LXIV). Mess. Math. 57, 12–16 (1928)
    • 12. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)
    • 13. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)
    • 14. Opic, B., Kufner, A.: Hardy-type Inequalities, Pitman Research Notes in Mathematics, vol. 219. Longman Scientific & Technical, Harlow...
    • 15. Bari´c, J., Bibi, R., Bohner, M., Nosheen, A., Peˇcari ´c, J.: Jensen Inequalities on Time Scales. Theory and Applications. Element, Zagreb...
    • 16. Batuev, E.N., Stepanov, V.D.: Weighted Inequalities of Hardy Type. Sibirskii Matematicheskii Zhurnal 30(1), 13–22 (1989)
    • 17. Wedestig, A.: Some new Hardy type inequalities and their limiting inequalities. J. Ineq. Pure Appl. Math. 4, Article 61 (2003)
    • 18. Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
    • 19. Agarwal, R.P., O’Regan, D., Saker, S.H.: Hardy Type Inequalities on Time Scales. Springer, Cham (2016)
    • 20. Oinarov, R., Rakhimova, S.Y.: Weighted Hardy inequalities and their applications to oscillation theory of half-linear differential equations....
    • 21. Rehák, P.: Hardy inequality on time scales and its application to half-linear dynamic equations. J. ˇ Inequal. Appl. 5, 495–507 (2005)
    • 22. Rehák, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties. Nonlinear ˇ Funct. Anal. Appl. 7, 361–404 (2002)
    • 23. Saker, S.H., Mahmoud, R.R., Peterson, A.: Weighted Hardy-type inequalities on time scales with Applications. Mediterr. J. Math. 13, 585–606...
    • 24. Saker, S.H., Mahmoud, R.R., Osman, M.M., Agarwal, R.P.: Some new generalized forms of Hardy’s type inequality on time scales. Math. Inequal....
    • 25. Saker, S.H., O’Regan, D.: Hardy and Littlewood inequalities on time scales. Bull. Malay. Math. Sci. Soc. 39, 527–543 (2016)
    • 26. Saker, S.H., Osman, M.M., Abohela, I.: New characterizations of weights in Hardy’s type inequalities via Opial’s dynamic inequalities....
    • 27. Saker, S.H., Osman, M.M., O’Regan, D., Agarwal, R.P.: Characterizations of reverse dynamic weighted Hardy-type inequalities with kernels...
    • 28. Saker, S.H., Osman, M.M., O’Regan, D., Agarwal, R.P.: Hardy-type operators with general kernels and characterizations of dynamic weighted...
    • 29. Saker, S.H., Osman, M.M., O’Regan, D., Agarwal, R.P.: Inequalities of Hardy-type and generalizations on time scales. Analysis 38(1), 47–62...
    • 30. Saker, S.H., Mahmoud, R.R.: A connection between weighted Hardy’s inequality and half-linear dynamic equations. Adv. Differ. Equ. 2019(1),...
    • 31. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
    • 32. Bibi, R., Bohner, M., Peˇcari´c, J., Varošanec, S.: Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math....
    • 33. Bennett, G.: Some elementary inequalities. Quart. J. Math. Oxf. 38, 401–425 (1987)
    • 34. Bliss, G.A.: An integral inequality. J. Lond. Math. Soc. 5, 40–46 (1930)
    • 35. Flett, T.M.: A note on some inequalities. Proc. Glasgow Math. Assoc. 4, 7–15 (1958)
    • 36. Agarwal, R.P., Bohner, M., Rehák, P.: Half-linear dynamic equations. Nonlinear Analysis and Applica- ˇ tions: To V. Lakshmikantham on...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno