Ir al contenido

Documat


Dynamics Analysis of Llibre-Menezes Piecewise Linear Systems

  • Zhang, Yuhong [1] ; Yang, Xiao-Song [1]
    1. [1] Huazhong University of Science and Technology

      Huazhong University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper presents a qualitative analysis of discontinuous Llibre-Menezes piecewise linear systems. We obtain the explicit parameter conditions for the existence of limit cycles and the stable sliding segments. In addition, we prove that if a Llibre-Menezes piecewise system is continuous, then this system has a global asymptotically stable equilibrium point. Some examples are given to illustrate the main results.

  • Referencias bibliográficas
    • 1. Barabanov, N.E.: On the kalman problem. Sib. Math. J. 29, 333–341 (1988)
    • 2. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer...
    • 3. Bernat, J., Llibre, J.: Counterexample to kalman and markus-yamabe conjectures in dimension larger than 3. Dyn. Contin. Discrete Impuls....
    • 4. Castillo, J., Llibre, J., Verduzco, F.: The pseudo-hopf bifurcation for planar discontinuous piecewise linear differential systems. Nonlinear...
    • 5. Chamberland, M.: Global asymptotic stability, additive neural networks, and the jacobian conjecture. Can. Appl. Math. Q. 5(4), 331–339...
    • 6. Chamberland, M., Llibre, J., Swirszcz, G.: Weakened markus-yamabe conditions for 2-dimensional ´ global asymptotic stability. Nonlinear...
    • 7. Chicone, C.: Ordinary Differential Equations with Applications, vol. 34. Springer, New York (2006)
    • 8. Cima, A., Essen, A.V.d., Gasull, A., Hubbers, E.M.G.M., Manosas, F.: A polynomial counterexample to the markus-yamabe conjecture. Adv....
    • 9. Feßler, R.: A proof of the two-dimensional markus-yamabe stability conjecture and a generalization. In: Annales Polonici Mathematici, vol....
    • 10. Filippov, A.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Trans. 42, 199–231 (1964)
    • 11. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Springer, Berlin (1988)
    • 12. Gasull, A., Llibre, J., Sotomayor, J.: Global asymptotic stability of differential equations in the plane. J. Differ. Equ. 91(2), 327–335...
    • 13. Glutsyuk, A.: Asymptotic stability of linearizations of a planar vector field with a singular point implies global stability. Funct. Anal....
    • 14. Gutiérrez, C.: A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. Henri Poincare C Anal. Non-lineaire...
    • 15. Hartman, P.: On stability in the large for systems of ordinary differential equations. Can. J. Math. 13, 480–492 (1961)
    • 16. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar filippov systems. Int. J. Bifurc. Chaos 13(08), 2157–2188...
    • 17. Llibre, J., de Menezes, L.A.S.: The Markus-Yamabe conjecture does not hold for discontinuous piecewise linear differential systems separated...
    • 18. Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn....
    • 19. Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12(2), 305–317 (1960)
    • 20. Meisters, G.H., Olech, C.: Solution of the global asymptotic stability jacobian conjecture for the polynomial case, pp. 373–381. Analyse...
    • 21. Meisters, G.H., Olech, C.: Global stability, injectivity, and the jacobian conjecture. In World Congress of Nonlinear Analysts’ 92, pp....
    • 22. Parthasarathy, T.: On the global stability of an autonomous system on the plane. In On Global Univalence Theorems. pp. 59–67. Springer,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno