México
Las redes neuronales artificiales son útiles para procesar datos con información incompleta para obtener una salida deseada. En los sistemas de medición de robots manipuladores, solo se toman muestras cuantificadas de la posición y, por lo tanto, no se puede ejecutar en un tiempo razonable algoritmos deterministas para extraer los parámetros del robot. En el estado del arte, se abordan algoritmos de extracción de parámetros basados en la suposición de que no existe la cuantificación de las señales del movimiento del robot y quela primera y segunda derivada de la posición son muestreadas y no estimadas. En este trabajo, se propone un algoritmo basado en una red neuronal entrenada para extraer los parámetros de un determinado robot para reducir el tiempo de caracterización del robot, además, con la metodología propuesta se pueden extraer parámetros dinámicos del mismo tipo de robot con el que se ha entrenado la red neuronal.
The artificial neural networks are suitable for processing incomplete data to achieve the desired output. The acquisition system of the manipulator robots takes quantified samples of the position; therefore, it is not possible to execute deterministic algorithms of parameter extraction in a reasonable time. State of the art describes algorithms based on the assumption that the motion signals are not quantified, and the first and second derivatives of the position are sampled instead of estimated. In this paper, a trained neural network-based extraction parameter algorithm for a determined robot is proposed to reduce the robot characterization time. Also, with the proposed methodology is possible to extract the parameters of the same kind of robot used for training the neural network.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados