Ir al contenido

Documat


Optimización del consumo eléctrico mediante la heurística cúmulo de partículas

  • Blanca Nydia Perez-Camacho [1] ; Juan Manuel Gonzalez-Calleros [1] ; Gustavo Rodriguez-Gomez [2]
    1. [1] Benemérita Universidad Autónoma de Puebla

      Benemérita Universidad Autónoma de Puebla

      México

    2. [2] Instituto Nacional de Astrofísica, Óptica y Electrónica

      Instituto Nacional de Astrofísica, Óptica y Electrónica

      México

  • Localización: Revista Colombiana de Computación, ISSN 1657-2831, ISSN-e 2539-2115, Vol. 22, Nº. 2, 2021, págs. 14-21
  • Idioma: español
  • DOI: 10.29375/25392115.4293
  • Títulos paralelos:
    • Electrical consumption optimization through particle swarm optimization
  • Enlaces
  • Resumen
    • español

      En el presente trabajo se da una breve explicación de la técnica de optimización por cúmulo de partículas para ser implementada como parte de la búsqueda del estado óptimo de consumo de un conjunto de dispositivos. Los dispositivos de uso doméstico, en conjunto, permiten caracterizar el consumo eléctrico de una casa habitación a través del comportamiento de uso. Cada uno de los dispositivos presenta un comportamiento de consumo. El objetivo de la optimización se refleja en la función objetivo, la cual es definida de acuerdo con el propósito general de implementación. Los datos de consumo de los dispositivos eléctricos son almacenados en vectores de consumo-hora, donde cada una de las posiciones corresponde al consumo generado por un dispositivo en una hora determinada. Cada uno de los vectores es usado por la heurística como un vector de referencia durante la búsqueda para encontrar el vector que cumple con la función objetivo.

    • English

      This paper gives a brief explanation of the particle swarm optimization technique, which is given to be implemented to look for the optimal state of consumption from a set of household appliances. The household appliances allow characterizing the electrical consumption of a dwelling house through use behavior. Every household appliance shows a behavior consumption. The goaloptimization objective is seen as the objective function defined according to the general implementation purpose. The consumption data of household appliances are stored in hourly consumption vectors, where everyone's position corresponds to the consumption generated by a household appliance in each hour. The heuristics use each of the vectors as a reference vector during the search to find the vector that fulfills the objective function.

  • Referencias bibliográficas
    • Referencias Adika, C. O., & Wang, L. (2014). Autonomous Appliance Scheduling for Household Energy Management. IEEE Transactions on Smart...
    • Barbato, A., Capone, A., Carello, G., Delfanti, M., Falabretti, D., & Merlo, M. (2014). A framework for home energy management and its...
    • Blecic, I., Cecchini, A., & Trunfio, G. A. (2007). A decision support tool coupling a causal model and a multi-objective genetic algorithm....
    • Chen, S., Liu, T., Gao, F., Ji, J., Xu, Z., Qian, B., Wu, H., & Guan, X. (2017). Butler, Not Servant: A Human-Centric Smart Home Energy...
    • Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE...
    • Emara, H. M., & Abdel Fattah, H. A. (2004). Continuous swarm optimization technique with stability analysis. Proceedings of the 2004 American...
    • Hao, Y., Wang, W., & Qi, Y. (2017, October). Optimal home energy management with PV system in time of use tariff environment. 2017 Chinese...
    • Huang, Y., Tian, H., & Wang, L. (2015). Demand response for home energy management system. International Journal of Electrical Power &...
    • Javaid, N., Hussain, S., Ullah, I., Noor, M., Abdul, W., Almogren, A., & Alamri, A. (2017). Demand Side Management in Nearly Zero Energy...
    • Javaid, N., Naseem, M., Rasheed, M. B., Mahmood, D., Khan, S. A., Alrajeh, N., & Iqbal, Z. (2017). A new heuristically optimized Home...
    • Jiang, M., Luo, Y. P., & Yang, S. Y. (2007). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization...
    • Kadirkamanathan, V., Selvarajah, K., & Fleming, P. J. (2006). Stability analysis of the particle dynamics in particle swarm optimizer....
    • Kakran, S., & Chanana, S. (2018). Energy Scheduling of Smart Appliances at Home under the Effect of Dynamic Pricing Schemes and Small...
    • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks....
    • Kim, D. H., & Shin, S. (2006). Self-organization of Decentralized Swarm Agents Based on Modified Particle Swarm Algorithm. Journal of...
    • Lotfi, J., Abdi, F., & Abbou, M. F. (2017, November). Smart Home Energy System Modeling and Implementation. 2017 European Conference on...
    • Muhammad Mohsin, S., Javaid, N., Madani, S. A., Abbas, S. K., Akber, S. M. A., & Khan, Z. A. (2018, May). Appliance Scheduling in Smart...
    • Nadeem, Z., Javaid, N., Malik, A., & Iqbal, S. (2018). Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained...
    • Rahim, S., Javaid, N., Ahmad, A., Khan, S. A., Khan, Z. A., Alrajeh, N., & Qasim, U. (2016). Exploiting heuristic algorithms to efficiently...
    • Rasheed, M., Javaid, N., Awais, M., Khan, Z., Qasim, U., Alrajeh, N., Iqbal, Z., & Javaid, Q. (2016). Real Time Information Based Energy...
    • Sun, X., Ji, S., & Wen, C. (2017, October). An optimized scheduling strategy for smart home users under the limitation of daily electric...
    • Tan, X., Shan, B., Hu, Z., & Wu, S. (2012, June). Study on demand side management decision supporting system. 2012 IEEE International...
    • Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters,...
    • van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176(8)....
    • Yao, L., Shen, J.-Y., & Lim, W. H. (2016, December). Real-Time Energy Management Optimization for Smart Household. 2016 IEEE International...
    • Zeng, W., Zhang, Y., & Yan, L. (2010, October). Mechanism of Particle Swarm Optimization and Analysis on Its Convergence. 2010 Third International...
    • Zhigang Lian, Fan Zhu, Zailin Guan, & Xinyu Shao. (2008). The analysis of particle swarm optimization algorithm’s convergence. 2008 7th...
    • Zhou, B., Li, W., Chan, K. W., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management systems: Concept, configurations,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno