Ir al contenido

Documat


The Maximum Box Problem for Moving Points on the Plane

  • S. Bereg [3] ; J.M. Díaz Báñez [1] ; P. Pérez Lantero [2] ; I. Ventura [1]
    1. [1] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

    2. [2] Universidad de La Habana

      Universidad de La Habana

      Cuba

    3. [3] University of Texas
  • Localización: XIII Encuentros de Geometría Computacional: Zaragoza, del 29 de junio al 1 de julio de 2009 / Alfredo García Olaverri (ed. lit.) Árbol académico, Javier Tejel Altarriba (ed. lit.) Árbol académico, 2009, ISBN 978-84-92774-11-1, págs. 235-242
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given a set R of r red points and a set B of b blue points on the plane, the static version of the Maximum Box Problem is to find an isothetic box H such that H \ R = ; and the cardinality of H \ B is maximized. In this paper, we consider a kinetic version of the problem where the points in R [ B move according to algebraic functions. We design a compact and local quadratic-space kinetic data structure (KDS) for maintaining the optimal solution in O(r log r + r log b) time per each event. We also study the general static problem where the maximum box can be arbitrarily oriented. This is an open problem in [1]. We show that our approach can be used to solve this problem in O((r + b)2(r log r + r log b)) time. Finally we propose an efficient data structure to maintain an approximated solution of the kinetic Maximum Box Problem.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno