Ir al contenido

Documat


Retrospectiva y Prospectiva del Desarrollo de las Generaciones de Biocombustibles

  • Autores: Gerald Torrentes Espinoza
  • Localización: Ciencia y tecnología, ISSN 1850-0870, ISSN-e 2344-9217, Nº. 21, 2021
  • Idioma: español
  • DOI: 10.18682/cyt.vi21.2593
  • Títulos paralelos:
    • Retrospective and Prospect of the development of Biofuel Generations
  • Enlaces
  • Resumen
    • español

      La creciente preocupación por el medio ambiente y la necesidad imperiosa de reducir las emisiones de carbono para disminuir sus consecuencias sobre el clima global han redundado en numerosos acuerdos y compromisos entre los países tendientes a fomentar el desarrollo de energías alternativas renovables de menor impacto ambiental. Los biocombustibles de primera generación son producidos directamente a partir de cultivos, al extraer su aceite, a través del proceso de fermentación. El debate con este tipo de biocombustibles se da debido a que un incremento en la demanda de biocombustibles de primera generación conduciría a que gran cantidad de las cosechas no sean colocadas en el mercado alimenticio. Los biocombustibles de segunda generación son obtenidos de materias primas no comestibles, como la madera, desechos orgánicos y cultivos específicos, ofreciendo una mayor competitividad en el mercado en términos de su costo en relación con los combustibles fósiles existentes. Los biocombustibles de tercera generación usan microorganismos como materia prima, mientras que los biocombustibles de cuarta generación se centran en modificar genéticamente estos microorganismos para lograr una relación alta de hidrógeno a carbono. El objetivo de esta investigación es brindar un amplio panorama de las cuatro generaciones de biocombustibles líquidos. Este trabajo concluye que las metodologías que existen en la actualidad para producir biocombustibles de primera y segunda generación pronto no satisfarán la demanda de biocombustibles y en consecuencia se deben dirigir los recursos hacia la tercera y cuarta generación, con especial énfasis al desarrollo de la ingeniería genética de las materias primas.

    • English

      The growing concern for the environment and the urgent need to reduce carbon emissions to lessen its consequences on the global climate have resulted in numerous agreements and commitments between countries to promote the development of renewable alternative energy sources with less environmental impact. First generation biofuels are produced directly from crops, by extracting their oil, through the fermentation process. The debate with this type of biofuels occurs because an increase in the demand for first-generation biofuels would lead to many crops not being placed in the food market. Second generation biofuels are obtained from inedible feedstock, such as wood, organic waste and specific crops, offering greatercompetitiveness in the market in terms of their cost in relation to existing fossil fuels. Third generation biofuels use microorganisms as the raw material, while fourth generation biofuels focus on genetically modifying these microorganisms to achieve a high hydrogen to carbon ratio. The objective of this research is to provide a broad overview of the four generations of liquid biofuels. This work concludes that the methodologies that currently exist to produce first and second generation biofuels will soon not satisfy the demand for biofuels and, consequently, resources should be directed towards the third and fourth generation, with special emphasis on the development of genetic engineering of their raw materials.

  • Referencias bibliográficas
    • Askew, M. F. (2003). Progress in renewable energy. International Sugar Journal, 105(1259), 535–539.
    • Atabani, A., Silitonga, A., Badruddin, I., Mahlia, T., Masjuki, H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative...
    • Carere, C., Sparling, R., Cicek, N., & Levin, D. (2008). Third generation biofuels via direct cellulose fermentation. International Journal...
    • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.
    • Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., …
    • Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy...
    • Galazca, J., Tian, C., & Beeson, W. (2010). Cellodextrin transport in yeast for improved biofuel production. Science, 330(6000), 84–86.
    • Hallmann, A. (2015). Algae biotechnology – green cell-factories on the rise. Current Biotechnology, 4(4), 389–415.
    • Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D., & Karube, I. (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry,...
    • Hu, Q., Sommerfield, M., Jarvis, E., & Ghirardi, M. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives...
    • Huo, Y., Rivera, J., Monte, E., & Liao, J. (2011). Conversion of proteins into biofuels by engineering nitrogen flux. Nature Biotechnology,...
    • Lam, M., & Lee, K. (2011). Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward...
    • Lam, M., & Lee, K. (2012). Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology Advances, 30(3),...
    • Lee, O., & Lee, E. (2016). Sustainable production of bioethanol from renewable brown algae biomass. Biomass and Bioenergy, 92, 70–75.
    • Los, D., & Mironov, K. (2015). Modes of fatty acid desaturation in cyanobacteria: an update. Life, 5, 554–567.
    • Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.
    • Peralta, Y., Zhang, F., del Cardayre, S., & Keasling, J. (2012). Microbial engineering for the production of advanced biofuels. Nature,...
    • Pinto, A., Guarieiro, L., & Razende, M. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16(6), 1313–1330.
    • Quintana, N., van der Krooy, F., van de Rhee, M., Voshol, G., & Verpoorte, R. (2011). Renewable energy from cyanobacteria: energy production...
    • Rasala, B., Muto, M., Lee, P., & Jager, M. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human...
    • Rizza, L., Smachetti, M., Nascimento, M., Salerno, G., & Curatti, L. (2017). Bioprospecting for native microalgae as an alternative source...
    • Ruffing, A., & Jones, H. (2012). Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus...
    • Sarsekeyeva, F., Zayadan, B., Usserbaeva, A., Bedbenov, V., & Sinetova, M. (2015). Cyanofuels: biofuels from cyanobacteria. Reality and...
    • Shahid, E., & Jamal, Y. (2011). Production of biodiesel: a technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732–4745.
    • Sung, K., Lee, J., Shin, C., & Choi, M. (1999). CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology,...
    • Tan, I., & Lee, K. (2016). Comparison of different process strategies for bioethanol production from Eucheuma cottonii: an economic study....
    • Tsukahara, K., & Sawayama, S. (2005). Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute, 48(5), 251–259.
    • Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, T. M. H., Liu, Y., Liu, Y., … Chang, S. W. (2019). A critical review on designs and applications...
    • Zhang, A., Luo, J., & Zhang, T. (2009). Recent advances on the GAP promoter derived expression system of Pichia pastoris. Molecular Biology...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno