Ir al contenido

Documat


Inventing theorems with GeoGebra: a new altitude theorem

  • Fernando Etayo Gordejuela [1] Árbol académico ; Nicolás de Lucas Sanz [1] ; Tomás Recio [2] Árbol académico ; M. Pilar Vélez [2] Árbol académico
    1. [1] Universidad de Cantabria

      Universidad de Cantabria

      Santander, España

    2. [2] Universidad Nebrija

      Universidad Nebrija

      Madrid, España

  • Localización: Boletín de la Sociedad Puig Adam de profesores de matemáticas, ISSN 1135-0261, Nº. 111, 2021, págs. 8-28
  • Idioma: inglés
  • Títulos paralelos:
    • Inventando teoremas con GeoGebra: un nuevo teorema de la altura
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The altitude theorem states that, in a right triangle, the altitude drawn form the right angle to the hypotenuse divides the hypotenuse into two segments, the length of the altitude is the geometric mean of these two segments. A generalization of this classical theorem is discovered and proved here through the interaction of automated and human reasoning. GeoGebra automated reasoning tools reveal the existence of a large family of triangles (right and pseudo-right) that verify the thesis of the theorem. Then human reasoning leads to the characterization of pseudo-right triangles from euclidean and lorentzian geometries. Some reflections of educational nature about the development of human reasoning suported by technological tools arise naturally.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno