Ir al contenido

Documat


Some remarks on farthest points

  • Autores: V. Montesinos, Peter Zizler, V. Zizler
  • Localización: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM ), ISSN-e 1578-7303, Vol. 105, Nº. 1, 2011, págs. 119-131
  • Idioma: inglés
  • DOI: 10.1007/s13398-011-0012-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We use renormings and generic differentiability of convex functions to prove some results on farthest points in sets in Banach spaces. As a corollary, we obtain an alternative proof of the Lindenstrauss-Troyanski result on representation of weakly compact convex sets by means of strongly exposed points. We use this approach to simplify former proofs of several known results in this area. © 2011 Springer-Verlag.

  • Referencias bibliográficas
    • Asplund, E., Farthest points in reflexive locally uniformly rotund Banach spaces (1966) Israel J. Math., 4, pp. 213-216
    • Bandyopadhyay, P., Dutta, S., Farthest points and the farthest distance map (2005) Bull. Austral. Math. Soc., 71, pp. 425-433
    • Bourgain, J., On dentability and the Bishop-Phelps property (1976) Israel J. Math., 28, pp. 265-271
    • Cobczas, S., Geometric properties of Banach spaces and the existence of nearest and farthest points (2005) Abstr. Appl. Anal., 2005 (3),...
    • Davis, W.J., Figiel, T., Johnson, W.B., Pełczyński, A., Factoring weakly compact operators (1974) J. Funct. Anal., 17, pp. 311-327
    • Deville, R., Godefroy, G., Zizler, V., (1993) Smoothness and renormings in Banach spaces, , Pitman Monogr. London, Logman 64
    • Deville, R., Zizler, V., Farthest points in w*-compact sets (1998) Bull. Austral. Math. Soc., 38, pp. 433-439
    • Edelstein, M., Farthest points of sets in uniformly convex Banach spaces (1966) Israel J. Math., 4, pp. 171-176
    • Edelstein, M., Lewis, J.E., On exposed and farthest points in normed linear spaces (1971) J. Austral. Math. Soc., 12, pp. 301-308
    • Fabian, M., Habala, P., Hájek, P., Pelant, J., Montesinos, V., Zizler, V., Functional analysis and infinite dimensional geometry (2001) Books...
    • Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V., Banach space theory: The basis for linear and nonlinear analysis Books in...
    • Fabian, M., Montesinos, V., Zizler, V., On weak compactness in L1 spaces (2009) Rocky Mt. J. Math., 39, pp. 1885-1893
    • Fitzpatrick, S., Metric projections and the differentiability of distance functions (1980) Bull. Austral. Math. Soc., 22, pp. 291-313
    • Hájek, P., Montesinos, V., Vanderwerff, J., Zizler, V., Biorthogonal systems in Banach spaces (2008) Books in Mathematics, 26. , Canadian...
    • Lau, K.-S., Farthest points in weakly compact sets (1975) Israel J. Math., 22 (2), pp. 168-174
    • Lindenstrauss, J., On operators which attain their norms (1963) Israel J. Math., 3, pp. 139-148
    • Phelps, R.R., Dentability and extreme points in Banach spaces (1974) J. Funct. Anal., 17, pp. 78-90
    • Schlüchtermann, G., Wheeler, R.F., On strongly WCG Banach spaces (1988) Math. Z., 199, pp. 387-398
    • Straszewicz, S., Über exponierte Punkte abgeschlossener Punktmengen (1935) Fund. Math., 24, pp. 139-143
    • Troyanski, S., On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces (1971) Studia Math., 37, pp. 173-180
    • Zhivkov, N.V., Metric projections and antiprojections in strictly convex normed spaces (1978) C.R. Acad. Bulgare Sci., 31 (4), pp. 369-372
    • Zizler, V., On some extremal problems in Banach spaces (1973) Math. Scand., 32, pp. 214-224

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno