Ir al contenido

Documat


A note on a theorem of James

  • Autores: Manuel Valdivia Ureña Árbol académico
  • Localización: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM ), ISSN-e 1578-7303, Vol. 105, Nº. 1, 2011, págs. 139-148
  • Idioma: inglés
  • DOI: 10.1007/s13398-011-0011-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (en)n=1∞ be the unit basis of the Banach space c0. In this paper we prove that, if X is a separable Banach space, there is a closed bounded absolutely convex subset B of c0 which has the following properties: (1) ej ∈ B, j=1,2,...′, and (en)n=1∞ is a monotone shrinking basis of (c0)B. (2) (c0)B has a topological complement Z in ((c0)B)** which is weak*-closed and isometric to X*. (3) The projection from ((c0)B)** onto Z along (c0)B has norm one. © 2011 Springer-Verlag.

  • Referencias bibliográficas
    • Davis, V.J., Figiel, T., Jonhson, W.B., Pelczinski, A., Factoring weakly compact operators (1974) J. Funct. Anal., 17, pp. 311-327
    • Haydon, R., An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson (1976) Q. J. Math....
    • James, R.C., Separable conjugate spaces (1960) Pac. J. Math., 10, pp. 563-571
    • Lindenstrauss, J., On James' paper on separable conjugate spaces (1971) Isr. J. Math., 9, pp. 279-284

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno