Ir al contenido

Documat


The set of periods of chaotic operators and semigroups

  • Autores: Gustavo Adolfo Muñoz Fernández Árbol académico, Juan Benigno Seoane Sepúlveda Árbol académico, A. Weber
  • Localización: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM ), ISSN-e 1578-7303, Vol. 105, Nº. 2, 2011, págs. 397-402
  • Idioma: inglés
  • DOI: 10.1007/s13398-011-0016-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This expository paper is devoted to the review of some very recent results concerning the set of periods of a chaotic operator T or a chaotic semigroup {T (t): t ≥ 0} acting on a complex Banach space. We obtain information about the structure of the set of periods and we give techniques to construct (chaotic) strongly continuous semigroups with prescribed periods. © 2011 Springer-Verlag.

  • Referencias bibliográficas
    • Ali Akbar, K., Kannan, V., Gopal, S., Chiranjeevi, P., The set of periods of periodic points of a linear operator (2009) Linear Algebra Appl.,...
    • Aron, R.M., Seoane-Sepúlveda, J.B., Weber, A., Chaos on function spaces (2005) Bull. Austral. Math. Soc., 71 (3), pp. 411-415
    • Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P., On Devaney's definition of chaos (1992) Amer. Math. Monthly, 99 (4), pp. 332-334
    • Bayart, F., Bermúdez, T., Semigroups of chaotic operators (2009) Bull. London Math. Soc., 41 (5), pp. 823-830
    • Bayart, F., Grivaux, S., Hypercyclicity and unimodular point spectrum (2005) J. Funct. Anal., 226 (2), pp. 281-300
    • Bayart, F., Matheron, E., (2009) Dynamics of Linear Operators, Cambridge Tracts in Mathematics, Vol. 179, , Cambridge: Cambridge University...
    • Block, L.S., Coppel, W.A., (1992) Dynamics in One Dimension, Lecture Notes in Mathematics, Vol. 1513, , Berlin: Springer
    • Conejero, J.A., Martínez-Giménez, F., Peris, A., (2011) Sets of Periods For Chaotic Linear Operators, , preprint
    • Delaubenfels, R., Emamirad, H., Chaos for functions of discrete and continuous weighted shift operators (2001) Ergod. Theory Dynam. Syst.,...
    • Devaney, R.L., An introduction to chaotic dynamical systems, second (1989) Addison-Wesley Studies In Nonlinearity, , Addison-Wesley Publishing...
    • Elaydi, S., On a converse of Sharkovsky's theorem (1996) Am. Math. Mon., 103 (5), pp. 386-392
    • Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal., 98 (2), pp. 229-269
    • Grosse-Erdmann, K.-G., Recent developments in hypercyclicity, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003) (2003) Colecc....
    • Grosse-Erdmann, K.-G., Universal families and hypercyclic operators (1999) Bull. Amer. Math. Soc. (N.S.), 36 (3), pp. 345-381
    • Kalish, G., On operators on separable Banach spaces with arbitrary prescribed point spectrum (1972) Proc. Amer. Math. Soc., 34 (1), pp. 207-208
    • Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A., (2010) Periods of Strongly Continuous Semigroups, , preprint
    • Pazy, A., (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44,...
    • Šarkovskii, A.N., Co-existence of cycles of a continuous mapping of a line onto itself (1964) Ukranian Math. Z., 16, pp. 61-71
    • Smolyanov, O.G., Shkarin, S.A., On the structure of the spectra of linear operators in Banach spaces (2001) Mat. Sb., 192 (4), pp. 99-114

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno