Ir al contenido

Documat


N-weakly supercyclic matrices

  • Autores: N. S. Feldman
  • Localización: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM ), ISSN-e 1578-7303, Vol. 105, Nº. 2, 2011, págs. 433-448
  • Idioma: inglés
  • DOI: 10.1007/s13398-011-0035-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We define an operator to n-weakly hypercyclic if it has an orbit that has a dense projection onto every n-dimensional subspace. Similarly, an operator is n-weakly supercyclic if it has a scaled orbit that has a dense projection onto every n-dimensional subspace. In this paper, we show the following results: (i) There are no n-weakly hypercyclic matrices on ℝn or ℂn. (ii) There are no 2-weakly supercyclic matrices on ℂn for n ≥ 2. (iii) There are no 3-weakly supercyclic matrices on ℝn for n ≥ 3; and (iv) there are 2-weakly supercyclic matrices on ℝ if and only if n is even. Finally, we show that there is an onto isometry on l2ℝ(ℕ)that is 2-weakly supercyclic, but not 3-weakly supercyclic and also give some examples involving tuples of matrices. We conclude with some questions. © 2011 Springer-Verlag.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno