In this paper we prove that if Y is a reflexive subspace of a Banach space X, then L∞(μ, Y) is simultaneously proximinal in L∞(μ, X). Furthermore if X is reflexive and μ0 is the restriction of μ to a sub-σ-algebra, then L∞(μ0, X) is simultaneously proximinal in L∞(μ, X). © 2011 Springer-Verlag.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados