Ir al contenido

Documat


Chaotic extensions of operators on Hilbert subspaces

  • Autores: C. K. Chan, G. Turco
  • Localización: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM ), ISSN-e 1578-7303, Vol. 105, Nº. 2, 2011, págs. 415-421
  • Idioma: inglés
  • DOI: 10.1007/s13398-011-0029-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • If M is a closed subspace of a separable, infinite dimensional Hilbert space H with dim (H/M) = ∞, we show that every bounded linear operator A: M → M can be extended to a chaotic operator T: H → H that satisfies the hypercyclicity criterion in the strongest possible sense. © 2011 Springer-Verlag.

  • Referencias bibliográficas
    • Argyros, S.A., Haydon, R.G., (2009) A Hereditarily Indecomposable L∞ Space That Solves the Scalar-plus-compact Problem, , Preprint
    • Bayart, F., Matheron, E., Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces (2007) J. Funct. Anal., 250,...
    • Bès, J.P., Chan, K.C., Approximation by chaotic operators and by conjugate classes (2003) J. Math. Anal. Appl., 284, pp. 206-212
    • Bonet, J., Martínez-Giménez, F., Peris, A., A Banach space which admits no chaotic operator (2001) Bull. Lond. Math. Soc., 33, pp. 196-198
    • Bonet, J., Martínez-Giménez, F., Peris, A., Universal and chaotic multipliers on spaces of operators (2004) J. Math. Anal. Appl., 297, pp....
    • Chan, K.C., Hypercyclicity of the operator algebra for a separable space (1999) J. Oper. Theory, 42, pp. 231-244
    • Chan, K.C., The density of hypercyclic operators on a Hilbert space (2001) J. Oper. Theory, 47, pp. 131-143
    • Chan, K.C., Taylor, R.D., Hypercyclic subspace of a Banach space (2001) Integral Equ. Oper. Theory, 41, pp. 381-388
    • Conejero, J.A., Peris, A., Linear transitivity criteria (2005) Topol. Appl., 153, pp. 767-773
    • de La rosa, M., Read, C., A hypercyclic operator whose direct sum T⊕Tis not hypercyclic (2009) J. Oper. Theory, 61, pp. 369-380
    • Feldman, N., Linear Chaos?, , http://home.wlu.edu/feldmann/research.html
    • Gethner, G.M., Shapiro, J.H., Universal vectors for operators on spaces of holomorphic functions (1987) Proc. Am. Math. Soc., 100, pp. 281-288
    • Godefroy, G., Shapiro, J.H., Operators with dense, invariant, cyclic vector manifolds (1991) J. Funct. Anal., 98, pp. 229-269
    • Grivaux, S., Topologically transitive extensions of bounded operators (2005) Math. Z., 249, pp. 85-96
    • Kitai, C., (1982) Invariant Closed Sets For Linear Operators, , PhD thesis, University of Toronto
    • León-Saavedra, F., Müller, V., Hypercyclic sequences of operators (2006) Stud. Math., 175, pp. 1-18
    • Montes-Rodríguez, A., Banach spaces of hypercyclic vectors (1996) Mich. Math. J., 43, pp. 419-436

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno