Ir al contenido

Documat


Structure of the Solution Set to Fractional Differential Inclusions with Impulses at Variable Times on Compact Interval

  • Wang, Qi [1] ; Li, Xiaoyue [1]
    1. [1] Anhui University

      Anhui University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00500-x
  • Enlaces
  • Resumen
    • A topological structure of the solution set to a class of fractional differential inclusions with (or impulses at variable times) is investigated. It is shown that the solution set is an Rδ-set under some assumptions by the well-known theorem Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998) and the generalized Gronwall inequality under suitable Banach space. One example is listed for illustrating the main results.

  • Referencias bibliográficas
    • 1. Lakshmikantham, V., Papageorgiou, N.S., Vasundhara, J.: The method of upper and lower solutions and monotone technique for impulsive differential...
    • 2. Lakshmikantham, V., Leela, S., Kaul, S.: Comparison principle for impulsive differential equations with variable times and Stability theory....
    • 3. Kaul, S.L., Lakshmikantham, V., Leela, S.: Extremal solutions, comparison principle and stability criteria for impulsive differential equations...
    • 4. Kaul, S.L.: On the existence of extremal solutions for impulsive differential equations with variable time. Nonlinear Anal. TMA. 25(4),...
    • 5. Kaul, S.L., Lakshmikantham, V.: Higher derivatives of Lyapunov functions and cone valued Lyapunov functions. Nonlinear Anal. 26, 1555–1564...
    • 6. Frigon, M., O’Regan, D.: Impulsive differential equations with variable times. Nonlinear Anal. 26(12), 1913–1922 (1996)
    • 7. Bajo, I., Liz, E.: Periodic boundary value problem for first order differential equations with impulses at variable times. J. Math. Anal....
    • 8. Bajo, I.: Pulse accumation in impulsive differential equations with variable times. J. Math. Anal. Appl. 216, 211–217 (1997)
    • 9. Kaul, S.K.: Vector Lyapunov functions in impulsive variable-time differential systems. Nonlinear Anal. 30(5), 2695–2698 (1997)
    • 10. Frigon, M., O’Regan, D.: First order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl. 233, 730–739...
    • 11. Fu, X.L., Qi, J.G., Liu, Y.S.: General comparison principle for impulsive variable time differential equations with application. Nonlinear...
    • 12. Qi, J.G., Fu, X.L.: Existence of limit cycles of impulsive differential equations with impulses at variable times. Nonlinear Anal. 44,...
    • 13. Dubeau, F., Karrakchou, J.: State-dependent impulsive delay-differential equations. Appl. Math. Lett. 15, 333–338 (2002)
    • 14. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A., Ouahab, A.: Nonresonance impulsive functional differential equations with variable...
    • 15. Benchohra,M., Graef, J.R., Ntouyas, S.K., Ouahab, A.: Upper and lower solutions method for impulsive differential inclusions with nonlinear...
    • 16. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Impulsive functional differential equations with variable times and infinite...
    • 17. Liu, L., Sun, J.T.: Existence of periodic solution for a harvested system with impulses at variable times. Phys. Lett. A 360, 105–108...
    • 18. Belarbi, A., Benchohra, M.: Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times. J. Math....
    • 19. Graef, J.R., Ouahab, A.: Global existence and uniqueness results for impulsive functional differential equations with variable times and...
    • 20. Akhmet, M.U., Turan, M.: Differential equations on variable time scales. Nonlinear Anal. 70, 1175– 1192 (2009)
    • 21. Peng, Y., Xiang, X., Wang, C.: A class of differential equations with impulses at variable times on Banach spaces. Nonlinear Anal. 71,...
    • 22. Peng, Y., Xiang, X., Jiang, Y.: A class of semilinear evolution equations with impulses at variable times on Banach spaces. Nonlinear...
    • 23. Abbas, S., Agarwal, R.P., Benchohra, M.: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with...
    • 24. Gabor, G.: The existence of viable trajectories in state-dependent impulsive systems. Nonlinear Anal. 72, 3828–3836 (2010)
    • 25. Benchohra, M., Berhoun, F.: Impulsive fractional differential equations with variable times. Comput. Math. Appl. 59, 1245–1252 (2010)
    • 26. Ezzinbi, K., Tour, H., Zabsonre, I.: An existence result for impulsive functional differential equations with variable times. Afr. Mat....
    • 27. ¸Saylı, M., Yılmaz, E.: Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Netw....
    • 28. Liu, C., Liu, W.P., Yang, Z., Liu, X.Y., Li, C.D., Zhang, G.J.: Stability of neural networks with delay and variable-time impulses. Neurocomputing...
    • 29. Li, H.F., Li, C.D., Huang, T.W.: Periodicity and stability for variable-time impulsive neural networks. Neural Netw. 94, 24–33 (2017)
    • 30. Hakl, R., Pinto, M., Tkachenko, V., Trfimchuk, S.: Almost periodic evolution systems with impulse action at state-dependent moments. J....
    • 31. Song, Q.K., Yang, X.J., Li, C.D., Huang, T.W., Chen, X.F.: Stability analysis of nonlinear fractionalorder systems with variable-time...
    • 32. Kneser, A.: Unteruchung und asymptotische darstellung der integrale gewisser differentialgleichungen bei grossen werthen des arguments....
    • 33. Aronszajn, N.: Le correspondant topologique de l’unicité dans la thérie des éuations difféntielles. Ann. Math. 43, 730–738 (1942)
    • 34. De Belasi, F.S., Myjak, J.: On the solutions sets for differential inclusions. Bull. Pol. Acad. Sci. Math. 12, 17–23 (1985)
    • 35. Djebali, S., Góniewicz, L., Ouahab, A.: Filippov-Wa˙zwski theorems and structure of solution sets for first order impulsive semilinear...
    • 36. Graef, J.R., Ouahab, A.: First order impulsive differential inclusions with periodic condition. Electron. J. Qual. Theory Differ. Equ....
    • 37. Graef, J.R., Ouahab, A.: Structure of solutions sets and a continuous version of Filippov’s theorem for first order impulsive differential...
    • 38. Djebali, S., Górniewicz, L., Ouahab, A.: First-order periodic impulsive semilinear differential inclusions: existence and structure of...
    • 39. Djebali, S., Górniewicz, L., Ouahab, A.: Topological structure of solution sets for impulsive differential inclusions in Frechet spaces....
    • 40. Gabor, G., Grudzka, A.: Structure of the solution sets to impulsive functional differential inclusions on the half-line. Nonlinear Differ....
    • 41. Grudzka, A., Ruszkowski, S.: Structure of the solution sets to differential inclusions with impulses at variable times. Electr. J. Differ....
    • 42. Gabor, G.: Differential inclusions with state-dependent impulses on the half-line: new Fréchet space of functions and structure of solution...
    • 43. Xiao, J.Z., Zhu, X.H., Cheng, R.: The solution sets of second order semilinear impulsive mutivalued boundary value problems. Comput. Math....
    • 44. Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J....
    • 45. Zhou, Y., Peng, L.: Topological properties of solution sets for partial functional evolution inclusions, C. R. Acad. Sci. Paris, Ser....
    • 46. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
    • 47. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics...
    • 48. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific Publisheing Co. Pte. Ltd, Singapore...
    • 49. Benchohr, M., Berhoun, F.: Impulsive fractional differential equations with variable times. Comput. Math. Appl. 59, 1245–1252 (2010)
    • 50. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, New York (1985)
    • 51. Bothe, D.: Multivalued perturbations of m-accretive differential inclusions. Israel J. Math. 108, 109– 138 (1998)
    • 52. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)
    • 53. Bainov, D., Simeonov, P.S.: Pitman monographs and surveys in pure and applied mathematics, vol. 66. Harlow Longman Scientific & technical,...
    • 54. Ha, P., Ye, J.M., Gao, Y.S.: Ding; A generalized Gronwall inequality and its application to a fractional differential equation. J. Math....
    • 55. Birkhoff, G.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken (1989)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno