Ir al contenido

Documat


Pseudo Affine-Periodic Solutions for Delay Differential Systems

  • Du, Jiayin [1] ; Yang, Xue [2] ; Wang, Shuai [2]
    1. [1] Jilin University

      Jilin University

      China

    2. [2] Changchun University of Science and Technology

      Changchun University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00492-8
  • Enlaces
  • Resumen
    • In this paper, we prove the existence and uniqueness of pseudo affine-periodic solutions for differential systems with finite or infinite delay via exponential dichotomy and some fixed point theorems. These solutions possess certain spatiotemporal structure and they might be periodic, rotating-periodic, or affine-periodic, even quasi-periodic.

  • Referencias bibliográficas
    • 1. Arino, O.A., Burton, T.A., Haddock, J.R.: Periodic solutions to functional differential equations. Proc. R. Soc. Edinb. A101(3–4), 253–271...
    • 2. Asim, Z., Ahmet, B., Muhammad, R., Hadi, R.: Investigation for optical soliton solutions of two nonlinear Schrodinger equations via two...
    • 3. Bi, L., Bohner, M., Fan, M.: Periodic solutions of functional dynamic equations with infinite delay. Nonlinear Anal. 68(5), 1226–1245 (2008)
    • 4. Burton, T.A., Zhang, B.: Periodic solutions of abstract differential equations with infinite delay. J. Differ. Equ. 90, 357–396 (1991)
    • 5. Chow, S.N.: Remarks on one-dimensional delay-differential equations. J. Math. Anal. Appl. 41, 426– 429 (1973)
    • 6. Cheng, C., Huang, F., Li, Y.: Affine-periodic solutions and pseudo affine-periodic solutions for differential equations with exponential...
    • 7. Chang, X., Li, Y.: Rotating-periodic solutions of second order dissipative denamical systems. Discrete Contin. Dyn. Syst. 36(2), 643–652...
    • 8. Coppel, W.A.: Dichotomies and reducibility. J. Differ. Equ. 3, 500–521 (1967)
    • 9. Coppel, W.A.: Dichotomies in Stability Theory. Springer, Berlin, New York (1978)
    • 10. Gomes, J.M., Lobosco, M., dos Santos, R.W., Cherry, E.M.: Delay differential equation-based models of cardiac tissue: efficient implementation...
    • 11. Greenberg, J.M.: Spiral waves for λ − ω systems. SIAM J. Appl. Math. 39(2), 301–309 (1980)
    • 12. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equaitons. Springer, New York (1993)
    • 13. Han, W., Ren, J.: Some results on second-order neutral functional differential equations with infinite distributed delay. Nonlinear Anal....
    • 14. Hatvani, L., Krisztin, T.: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations....
    • 15. Huang, Q.: Existence of periodic solutions to functional differential equations with infinite delay. Sci. Sinica Ser. A28(3), 242–251...
    • 16. Kitanov, P.M., LeBlanc, V.G.: Dynamics of meandering spiral waves with weak lattice perturbations. SAIM J. Appl. Dyn. Syst. 16(1), 16–53...
    • 17. Krisztin, T., Polner, M., Vas, G.: Periodic solutions and hydra effect for delay differential equations with nonincreasing feedback. Qual....
    • 18. Li, D., Du, J.: μ Pseudo rotating-periodic solutions for differential equations. Electron. J. Differ. Equ. 2020(43), 1–11 (2020)
    • 19. Li, Y., Wang, H., Lü, X., Lu, X.: Periodic solutions for functional differential equations with infinite lead and delay. Appl. Math. Comput....
    • 20. Li, Y., Zhou, Q., Lu, X.: Periodic solutions for functional differential inclusions with infinite delay. Sci. China Ser. A 37(11), 1289–1301...
    • 21. Lin, X.: Exponential dichotomies and homoclinic orbits in functional differential equation. J. Differ. Equ. 63(2), 227–254 (1986)
    • 22. Liu, G., Li, Y., Yang, X.: Existence and multiplicity of rotating periodic solutions for resonant Hamiltonian systems. J. Differ. Equ....
    • 23. Liu, G., Li, Y., Yang, X.: Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity....
    • 24. Lupa, N., Megan, M.: Exponential dichotomies of evolution operators in Banach spaces. Monatsh Math. 174(2), 265–284 (2014)
    • 25. Ruan, S., Zhang, W.: Exponential dichotomies, the fredholm alternative, and transverse homoclinic orbits in partial functional differential...
    • 26. Russell, J.S.: Report of the commuittee on waves, Rep. Meet. Brit. Assoc. Adv. Sci. 7th Liverpool: 417. John Murray, London (1837)
    • 27. Schmitt, K.: Periodic solutions of delay-differential equations. Spring Lect. Notes Math. 730, 455–469 (1979)
    • 28. Szydlowski, M., Krawiec, A., Tobola, J.: Nonlinear oscillation in business cycle model with time lags. Chaos Solitons Fract. 12(3), 505–517...
    • 29. Teng, Z.: On the periodic solutions of periodic multi-species competitive systems with delays. Appl. Math. Comput. 127(2–3), 235–247 (2002)
    • 30. Wang, C., Yang, X., Chen, X.: Affine-periodic solutions for impulsive differential systems. Qual. Theory Dyn. Syst. 19(1), 1–22 (2020)
    • 31. Wei, F., Wang, K.: The periodic solution of functional differential equations with infinite delay. Nonlinear Anal. 11(4), 2669–2674 (2010)
    • 32. Wu, G., Dai, C.: Nonautonomous soliton solutions of variabel-coefficient fractional nonlinear schro´dinger equaion. Appl. Math. Lett....
    • 33. Xing, J., Yang, X., Li, Y.: Rotating periodic solutions for convex Hamiltonian systems. Appl. Math. Lett. 89, 91–96 (2019)
    • 34. Xu, F., Yang, X.: Affine periodic solutions by asymptotic method. J. Dyn. Control Syst 27, 271–281 (2020)
    • 35. Yang, K.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191. Academic...
    • 36. Yang, X., Zhang, Y., Li, Y.: Existence of rotating-periodic solutions for nonlinear systems via upper and lower solutions. Rocky Mt. J....
    • 37. Zhang, G.: Functional Analysis. Peking University Press, Beijing (1987)
    • 38. Zhang, J., Yang, X.: Existence of rotating-periodic solutions for nonlinear second order vector differential equations. J. Inequal. Appl....
    • 39. Zhang, Y., Yang, X., Li, Y.: Affine periodic solutions for dissipative system. Abstr. Appl. Anal. 2013, 1–4 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno