Ir al contenido

Documat


Equicontinuity of Maps on Local Dendrites

  • Abdelli, Hafedh [1] ; Askri, Ghassen [2] ; Kedim, Imed [3]
    1. [1] Prince Sattam Bin Abdulaziz University & University of Monastir & University of Carthage
    2. [2] Prince Sattam Bin Abdulaziz University & University of Carthage & University of Carthage
    3. [3] Prince Sattam Bin Abdulaziz University & University of Carthage & University of Sfax
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00499-1
  • Enlaces
  • Resumen
    • In this paper, we provide some equivalent conditions of local dendrite maps to be equicontinuous.

  • Referencias bibliográficas
    • 1. Abdelli, H.: ω-limit sets for monotone local dendrite maps. Chaos Solitons Fractals 71, 66–72 (2015)
    • 2. Abdelli, H., Marzougui, H.: Invariant sets for monotone local dendrite maps, Internat. J. Bifurc. Chaos Appl. Sci. Eng. 26, 1650150 (2016)
    • 3. Askri, G.: Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. 37, 2957–2976 (2017)
    • 4. Askri, G.: Equicontinuity and Li-Yorke pairs of dendrite maps. Dyn. Syst. 35, 597–608 (2020)
    • 5. Askri, G., Naghmouchi, I.: Pointwise recurrence on local dendrites. Qual. Theory Dyn. Syst. 19, 629–637 (2020)
    • 6. Askri, G., Naghmouchi, I.: Topological size of scrambled sets for local dendrite maps. Topol. Appl. 164, 95–104 (2014)
    • 7. Block, L., Keesling, J.: A characterization of adding machine maps. Topol. Appl. 140(2–3), 151–161 (2004)
    • 8. Bruckner, A.M., HU, T.: Equicontinuity of iterates of an interval map. Tamkang, d. Math. 21, 287–294 (1990)
    • 9. Camargo, J., Cancino, J.: The ω-limit function on dendrites. Topol. Appl. 282, 107320 (2020)
    • 10. Camargo, J., Rincon, M., Uzcategui, C.: Equicontinuity of maps on dendrites. Chaos Solitons Fractals 126, 1–6 (2019)
    • 11. Kuratowski, K.: Topology, vol. 2. Academic Press, New-York (1968)
    • 12. Mai, J.H.: The structure of equicontinuous maps. Trans. Am. Math. Soc. 355, 4125–4136 (2003)
    • 13. Nadler, S.B.: Continuum Theory: An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, vol. 158. Marcel Dekker Inc,...
    • 14. Naghmouchi, I.: Dynamics of homeomorphisms of regular curves. Colloq. Math. 162, 263–277 (2020)
    • 15. Sun, T., Zhang, Y., Zhang, X.: Equicontinuity of a graph map. Bull. Aust. Math. Soc. 71, 61–67 (2005)
    • 16. Su, G., Sun, T., Han, C., Qin, B.: Characteristic of pointwise-recurrent maps on a dendrite. Dyn. Syst. Geom. Theor. 18, 1–14 (2020)
    • 17. Su, G., Qin, B.: Equicontinuous dendrite flows. Equ. Appl. 25, 1744–1754 (2019)
    • 18. Valaristos, A.: Equicontinuity of iterates of circle maps. Int. J. Math. Math. Sci. 21, 453–458 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno