Ir al contenido

Documat


A Quasilinear Predator-Prey Model with Indirect Prey-Taxis

  • Xing, Jie [1] ; Zheng, Pan [2] ; Pan, Xu [1]
    1. [1] University of Posts and Telecommunications
    2. [2] Yunnan University & University of Posts and Telecommunications
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00508-3
  • Enlaces
  • Resumen
    • This paper deals with a quasilinear predator-prey model with indirect prey-taxis ⎧ ⎪⎨ ⎪⎩ ut =∇· (D(u)∇u) −∇· (S(u)∇w) + rug(v) − uh(u), (x, t) ∈ × (0,∞), wt = dww − μw + αv, (x, t) ∈ × (0,∞), vt = dvv + f (v) − ug(v), (x, t) ∈ × (0,∞), under homogeneous Neumann boundary conditions in a smooth bounded domain ⊂ Rn, n ≥ 1, where dw, dv, α, μ,r > 0 and the functions g, h, f ∈ C2([0,∞)).

      The nonlinear diffusivity D and chemosensitivity S are supposed to satisfy D(s) ≥ a(s + 1) −γ and 0 ≤ S(s) ≤ bs(s + 1) β−1 for all s ≥ 0, with a, b > 0 and γ,β ∈ R. Suppose that γ + β < 1 + 1 n and γ < 2 n , it is proved that the problem has a unique global classical solution, which is uniformly bounded in time. In addition, we derive the asymptotic behavior of globally bounded solution in this system according to the different predation conditions.

  • Referencias bibliográficas
    • 1. Ahn, I., Yoon, C.: Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis. J. Differ. Equ. 268, 4222–4255...
    • 2. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)
    • 3. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J....
    • 4. Chakraborty, A., Singh, M., Lucy, D., Ridland, P.: Predator-prey model with prey-taxis and diffusion. Math. Comput. Model 46, 482–498 (2007)
    • 5. Cie´slak, T.: Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl. 326, 1410–1426 (2007)
    • 6. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin....
    • 7. Ding, M., Wang, W., Zhou, S., Zheng, S.: Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source...
    • 8. Feireisl, E., Laurencot, P., Petzeltová, H.: On convergence to equilibria for the Keller–Segel chemotaxis model. J. Differ. Equ. 236, 551–569...
    • 9. Ferrari, M.C., Wisenden, B.D., Chivers, D.P.: Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus....
    • 10. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778– 4806 (2019)
    • 11. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nach. 195, 77–144 (1998)
    • 12. He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis. Appl. Math....
    • 13. Hillen, T., Painter, K.J., Winkler, M.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl....
    • 14. Hoefler, C.D., Taylor, M., Jakob, E.M.: Chemosensory response to prey in phidippus audax (araneae, salticidae) and pardosa milvina (araneae,...
    • 15. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)
    • 16. Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math....
    • 17. Jin, H.Y., Wang, Z.A.: Global stability of prey-taxis systems. J. Differ. Equ. 262, 1257–1290 (2017)
    • 18. Kareiva, P., Odell, G.: Swarms of predators exhibit “prey-taxis” if individual predators use arearestricted search. Am. Nat. 130, 233–270...
    • 19. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theo. Biol. 26, 399–415 (1970)
    • 20. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)
    • 21. Lady˘zenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence (1968)
    • 22. Lee, J.M., Hillen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3, 551–573 (2009)
    • 23. Li, H., Tao, Y.: Boundedness in a chemotaxis system with indirect signal production and generalized logistic source. Appl. Math. Lett....
    • 24. Mishra, P., Wrzosek, D.: The role of indirect prey-taxis and interference among predators in pattern formation. Math. Meth. Appl. Sci.,...
    • 25. Murdoch, W., Chesson, J., Chesson, P.: Biological control in theory and practice. Am. Nat. 125, 344– 366 (1985)
    • 26. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)
    • 27. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40,...
    • 28. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20, 733–737 (1966)
    • 29. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funk. Ekva. 44, 441–469 (2001)
    • 30. Pang, P.Y., Wang, M.: Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. R. Soc. Edinb. Sect. A. Math....
    • 31. Qiu, S., Mu, C., Wang, L.: Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production....
    • 32. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interaction. Amer. Nat. 97, 209–223...
    • 33. Strohm, S., Tyson, R.C., Powell, J.A.: Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data....
    • 34. Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonl. Anal. Real World Appl. 11,...
    • 35. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math....
    • 36. Tello, J.I., Wrzosek, D.: Predator-prey model with diffusion and indirect prey-taxis. Math. Models Methods Appl. Sci. 26, 2129–2162 (2016)
    • 37. Wang, L., Mu, C., Hu, X., Zheng, P.: Boundedness in a quasilinear chemotaxis model with consumption of chemoattractant and logistic source....
    • 38. Wang, J.P., Wang, M.X.: The dynamics of a predator-prey model with diffusion and indirect prey-taxis. J. Dyn. Differ. Equ. 32, 1291–1310...
    • 39. Wang, X.L., Wang, W.D., Zhang, G.H.: Global bifurcation of solutions for a predator-prey model with prey-taxis. Math. Meth. Appl. Sci....
    • 40. Wang, J.F., Wei, J.J., Shi, J.P.: Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems. J....
    • 41. Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predatorprey model with prey-taxis. J. Differ....
    • 42. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)
    • 43. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Meth. Appl. Sci. 25, 911– 925 (2002)
    • 44. Wyatt, T.D.: Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge University Press, Cambridge (2003)
    • 45. Xiang, T.: Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka– Volterra kinetics. Nonl. Anal. Real...
    • 46. Xing, J., Zheng, P., Xiang, Y.T., Wang, H.: On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or...
    • 47. Zhang, W., Niu, P., Liu, S.: Large time behavior in chemotaixs model with logistic growth and indirecct signal production. Nonl. Anal....
    • 48. Zhao, J.: Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 40, 1737–1755...
    • 49. Zheng, P., Xing, J.: Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal...
    • 50. Zuk, M., Kolluru, G.R.: Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno