Ir al contenido

Documat


Equivariant Nonautonomous Normal Forms

  • Barreira, Luis [1] ; Valls, Claudia [1] Árbol académico
    1. [1] Universidade de Lisboa

      Universidade de Lisboa

      Socorro, Portugal

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00513-6
  • Enlaces
  • Resumen
    • For a nonautonomous dynamics with discrete time, we show that if the dynamics is equivariant (respectively, reversible), then any normal form as well as the coordinate change bringing the dynamics to this normal form have equivariance (respectively, reversibility) properties. The resonances of the linear part of the dynamics are expressed in terms of the nonuniform spectrum, that in its turn is defined in terms of the notion of a tempered exponential dichotomy.

  • Referencias bibliográficas
    • 1. Barreira, L., Pesin, Ya.: Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications 115. Cambridge University Press, Cambridge...
    • 2. Barreira, L., Valls, C.: Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete Contin. Dyn. Syst. 18,...
    • 3. Barreira, L., Valls, C.: Spectrum of a nonautonomous dynamics for growth rates. Publ. Math. Debrecen 91, 43–62 (2017)
    • 4. Barreira, L., Valls, C.: Normal forms via nonuniform hyperbolicity. J. Differ. Equ. 266, 2175–2213 (2019)
    • 5. Lamb, J., Roberts, J.: Time-reversal symmetry in dynamical systems: a survey, in Time-Reversal Symmetry in Dynamical Systems (Coventry,...
    • 6. Mielke, A.: Hamiltonian and Lagrangian Flows on Center Manifolds. Lecture Notes in Mathematics, vol. 1489. Springer, Berlin (1991)
    • 7. Roberts, J., Quispel, R.: Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep. 216, 63–177 (1992)
    • 8. Sacker, R., Sell, G.: A spectral theory for linear differential systems. J. Differ. Equ. 27, 320–358 (1978)
    • 9. Sevryuk, M.: Reversible Systems, Lecture Notes in Mathematics 1211, Spinger, (1986)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno