Ir al contenido

Documat


Attractors of Direct Products

  • Minkov, Stanislav [2] ; Shilin, Ivan [1]
    1. [1] Higher School of Economics, National Research University

      Higher School of Economics, National Research University

      Rusia

    2. [2] Brook Institute of Electronic Control Machines
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00510-9
  • Enlaces
  • Resumen
    • For Milnor, statistical, and minimal attractors, we construct examples of smooth flows φ on S2 for which the attractor of the Cartesian square of φ is smaller than the Cartesian square of the attractor of φ. In the example for the minimal attractors, the flow φ also has a global physical measure such that its square does not coincide with the global physical measure of the square of φ.

  • Referencias bibliográficas
    • 1. Agarwal, N., Rodrigues, A., Field, M.: Dynamics near the product of planar heteroclinic attractors. Dyn. Syst. Int. J. 26(4), 447–481 (2011)
    • 2. Ashwin, P., Field, M.: Product dynamics for homoclinic attractors. Proc. Roy. Soc. Ser. A. 461, 155–177 (2005)
    • 3. Arnold, V.I., Afraimovich, V.S., Ilyashenko, Yu.S., Shilnikov, L.P.: Bifurcation Theory. Dynamical Systems V. Springer, Berlin (1994)
    • 4. Blank, M., Bunimovich, L.: Multicomponent dynamical systems: SRB measures and phase transitions. Nonlinearity 16(1), 387–401 (2003)
    • 5. Gaunersdorfer, A.: Time averages for heteroclinic attractors. SIAM J. Appl. Math. 52(5), 1476–1489 (1992)
    • 6. Golenishcheva-Kutuzova, T.I., Kleptsyn, V.A.: Convergence of the Krylov-Bogolyubov Procedure in Bowen’s Example. Math. Notes 82(5), 608–618...
    • 7. Gorodetski, A., Ilyashenko, Yu.: Minimal and strange attractors. Int. J. Bifurcation Chaos 6(6), 1177– 1183 (1996)
    • 8. Gorodetski, A., Kleptsyn, V.: Synchronization properties of random piecewise isometries. Commun. Math. Phys. 345, 781–796 (2016)
    • 9. Gutierrez, C.: Structural stability for flows on the torus with a cross-cap. Trans. Am. Math. Soc. 241, 311–320 (1978)
    • 10. Ilyashenko, Y.: Minimal attractors. In: In. Publ. Hackensack, NJ, World Sci. (2005)
    • 11. Kleptsyn, V.: An example of non-coincidence of minimal and statistical attractors. Ergod. Th. Dynam. Syst. 26, 759–768 (2006)
    • 12. Kotova, V., Stanzo, A.: On few-parametric generic families of vector fields on the two-dimensional sphere. In: Ilyashenko, Y., Yakovenko,...
    • 13. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)
    • 14. Newhouse, S.: On a differentiable linearization theorem of Philip Hartman. Contemp. Math. 692, 209–262 (2017)
    • 15. Peixoto, M.: Structural stability on two dimensional manifolds. Topology 1(2), 101–120 (1962)
    • 16. Shilnikov, L.P., Shilnikov, A., Turaev, D., Chua, L.: Methods of Qualitative Theory in Nonlinear Dynamics. Part II. World Scientific Publishing,...
    • 17. Takens, F.: Heteroclinic attractors: Time averages and moduli of topological conjugacy. Bol. Soc. Bras. Mat 25, 107–120 (1994)
    • 18. Trifonov, S.: Cyclicity of elementary polycycles in generic smooth vector fields. Proc. Steklov Inst. Math. 213, 141–199 (1996)
    • 19. Yang, X.-S.: Concepts of synchronization in dynamical systems. Phys. Lett. A 260(5), 340–344 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno