Ir al contenido

Documat


An Impulsive Predator–Prey System with Modified Leslie–Gower Functional Response and Diffusion

  • Li, Xiaoyue [1] ; Wang, Qi [1] ; Han, Renji [2]
    1. [1] Anhui University

      Anhui University

      China

    2. [2] Zhejiang, University of Science and Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00517-2
  • Enlaces
  • Resumen
    • In this paper, an impulsive diffusive predator–prey system with modified Leslie–Gower functional response and Beddington–DeAngelis functional response is investigated. Some conditions for the permanence and the existence of a unique globally stable periodic solution of the predator–prey system are obtained by using the comparison theorem and Lyapunov functions. Some numerical simulations are listed to show the main results.

  • Referencias bibliográficas
    • 1. Tanner, J.T.: The stability and the intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)
    • 2. Wollkind, D.J., Collings, J.B., Logan, J.A.: Metastability in a temperature-dependent model system for predator–prey mite outbreak interactions...
    • 3. Saez, E., Gonzalez-Olivares, E.: Dynamics of a predator–prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)
    • 4. Hassell, M.P.: The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, Princeton (1978)
    • 5. Holling, C.S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965)
    • 6. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)
    • 7. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator–prey system with modified Holling–Tanner functional response....
    • 8. Aziz-Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type...
    • 9. Nindjin, A.F., Aziz-Alaoui, M.A., Cadivel, M.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes...
    • 10. Yang, W.S.: Global asymptotical stability and persistent property for a diffusive predator–prey system with modified Leslie–Gower functional...
    • 11. Zhou, J.: Positive solutions of a diffusive predator-prey model with modified Leslie–Gower and Hollingtype II schemes. J. Math. Anal....
    • 12. Yang, W.S., Li, Y.Q.: Dynamics of a diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes. Comput. Math....
    • 13. Zhou, J.: Positive steady state solutions of a Leslie–Gower predator-prey model with Holling type II functional response and density-dependent...
    • 14. Zhou, J., Shi, J.P.: The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator–prey...
    • 15. Yin, H.W., Zhou, J.X., Xiao, X., Wen, X.: Analysis of a diffusive Leslie–Gower predator–prey model with nonmonotonic functional response....
    • 16. Yin, H.W., Xiao, X., Wen, X., Liu, K.: Pattern analysis of a modified Leslie–Gower predator–prey model with Crowley–Martin functional...
    • 17. Li, S.B., Wu, J.H., Nie, H.: Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie–Gower predator–prey model. Comput. Math....
    • 18. Shi, H.B., Li, Y.: Global asymptotic stability of a diffusive predator–prey model with ratio-dependent functional response. Appl. Math....
    • 19. Safuan, H.M., Towers, I.N., Jovanoski, Z., Sidhu, H.S.: On travelling wave solutions of the diffusive Leslie–Gower model. Appl. Math....
    • 20. Zhao, D.L., Yuan, S.L.: Dynamics of the stochastic Leslie–Gower predator-prey system with randomized intrinsic growth rate. Phys. A 461,...
    • 21. Liu, M., Du, C.X., Deng, M.L.: Persistence and extinction of a modified Leslie–Gower Holling-type II stochastic predator–prey model with...
    • 22. Qiu, H.H., Guo, S.J.: Steady-states of a Leslie–Gower model with diffusion and advection. Appl. Math. Comput. 346, 695–709 (2019)
    • 23. Mishra, P., Raw, S.N., Tiwari, B.: Study of a Leslie–Gower predator–prey model with prey defense and mutual interference of predators....
    • 24. Liu, P., Yang, B.W.: Dynamics analysis of a reaction–diffusion system with Beddington–DeAngelis functional response and strong Allee effect....
    • 25. Han, R.J., Guin, L.N., Dai, B.X.: Cross-diffusion-driven pattern formation and selection in a modified Leslie–Gower Predator–prey model...
    • 26. Han, R.J., Guin, L.N., Dai, B.X.: Consequences of refuge and diffusion in a spatiotemporal predator–prey model. Nonlinear Anal. RWA 60,...
    • 27. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
    • 28. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)
    • 29. Smith, L.H.: Dynamics of Competition. Lecture Notes in Mathematics, vol. 1714. Springer, Berlin (1999)
    • 30. Chen, L.J., Chen, F.D.: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect. Nonlinear...
    • 31. Liu, X., Chen, L.: Global dynamics of the periodic logistic system with periodic impulsive perturbations. J. Math. Anal. Appl. 289, 279–291...
    • 32. Yan, J., Zhao, A., Nieto, J.J.: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka–Volterra...
    • 33. Jin, Z., Han, M.A., Li, G.: The persistence in a Lotka–Volterra competition systems with impulsive. Chaos Solitons Fractals 24, 1105–1117...
    • 34. Akhmeta, M.U., Beklioglub, M., Ergenca, T., Tkachenkoc, V.I.: An impulsive ratio-dependent predator–prey system with diffusion. Nonlinear...
    • 35. Wang, Q., et al.: An impulsive ratio-dependent n + 1-species predator–prey system with diffusion. Nonlinear Anal. RWA 11, 2164–2174...
    • 36. Liu, Z.J., Zhong, S.M., Liu, X.Y.: Permanence and periodic solutions for an impulsive reaction-diffusion food-chain system with holling...
    • 37. Walter, W.: Differential inequalities and maximum principles; theory, new methods and applications. Nonlinear Anal. Appl. 30, 4695–4711...
    • 38. Smith, L.H.: Dynamics of Competition. Lecture Notes in Mathematics, vol. 1714. Springer, Berlin (1999)
    • 39. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)
    • 40. Deng, Y., Liu, M.: Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Appl. Math. Model. 78,...
    • 41. Liu, M., Bai, C.Z.: Optimal harvesting of a stochastic mutualism model with regime-switching. Appl. Math. Comput. 373, 125040 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno