Ir al contenido

Documat


Dynamics of a Diffusive Avian Influenza Model with Spatial Heterogeneity and General Incidence Rate

  • Duan, Lian [1] ; Huang, Lihong [2] ; Huang, Chuangxia [2]
    1. [1] Anhui University of Science and Technology

      Anhui University of Science and Technology

      China

    2. [2] Changsha University of Science and Technology

      Changsha University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00507-4
  • Enlaces
  • Resumen
    • In this paper, we investigate a diffusive avian influenza model with general incidence rate, the threshold dynamics for the model is completely characterized by the basic reproduction number R0. It is shown that if R0 < 1 the disease-free steady state is globally asymptotically stable and the disease dies out; if R0 > 1 then the disease persists. Finally, a numerical example is provided to support the theoretical analysis.

      Our model extended the previous known results.

  • Referencias bibliográficas
    • 1. Vaidya, N., Wahl, L.: Avian influenza dynamics under periodic environmental conditions. SIAM J. Appl. Math. 75(2), 443–467 (2015)
    • 2. Vaidya, N., Wang, F., Zou, X.: Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete...
    • 3. Hethcote, H., Van, W.: Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization...
    • 4. Cai, Y., Lian, X., Peng, Z., Wang, W.: Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment. Nonlinear...
    • 5. Allen, L., Bolker, B., Lou, Y., Nevai, A.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete...
    • 6. Deng, K., Wu, Y.: Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc. Roy. Soc. Edinburgh Sect. A 146(5),...
    • 7. Cui, R., Lam, K., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ....
    • 8. Yang, Y., Zhou, J., Hsu, C.H.: Threshold dynamics of a diffusive SIRI model withnonlinear incidence rate. J. Math. Anal. Appl. 478, 874–896...
    • 9. Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey-Cpredator model with disease in the predator. Internat....
    • 10. Duan, L., Xu, Z.: Global stability in a diffusive cholera epidemic model with nonlinear incidence. Appl. Math. Lett. 111, 106596 (2021)
    • 11. Duan, L., Huang, L., Huang, C.: Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment....
    • 12. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024...
    • 13. Liu, W., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol....
    • 14. Crowley, P., Martin, E.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol....
    • 15. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)
    • 16. Chen, X., Cui, R.: Global stability in a diffusive cholera epidemic model with nonlinear incidence, Appl. Math. Lett. 111 (2021) Article...
    • 17. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207(1), 1–25 (2007)
    • 18. Jung, E., Iwami, S., Takeuchi, Y., Jo, T.: Optimal control strategy for prevention of avian influenza pandemic. J. Thero. Biol. 260(2),...
    • 19. Kim, K., Lin, Z., Zhang, L.: Avian-human influenza epidemic model with diffusion. Nonlinear Anal. Real World Appl. 11(1), 313–322 (2010)
    • 20. Agusto, F., Gumel, A.: Theoretical assessment of avian influenza vaccine. Discrete Contin. Dyn. Syst. Ser. B 13, 1–25 (2010)
    • 21. Smith, H.L.: Monotone dynamic systems: an introduction to the theory of competitive and cooperative systems. In: Math Surveys Monogr,...
    • 22. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44...
    • 23. Guo, Z., Wang, F., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math....
    • 24. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)
    • 25. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)
    • 26. Thieme, H.R.: Spectral bound and reproduction number for intinite-dimensional population structure and time heterogeneity. SIAM J. Appl....
    • 27. Wang, W., Zhao, X.Q.: Basic reproduction number for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)
    • 28. Magal, P., Webb, G.F., Wu, Y.: On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 79, 284–304...
    • 29. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)
    • 30. Thieme, H.R.: Convergence results and Poincaré-Bendixson tichotomy for asymptotically autonomous differential equations. J. Math. Biol....
    • 31. Smith, H.L., Zhao, X.Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47, 6169– 6179 (2001)
    • 32. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno