Ir al contenido

Documat


Stability and Hopf Bifurcation Analysis for a Two-Species Commensalism System with Delay

  • Li, Tianyang [1] ; Wang, Qiru [1]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00524-3
  • Enlaces
  • Resumen
    • This paper is devoted to studying the dynamics of a two-species commensalism system with delay. By analyzing the characteristic equation and regarding the time delay as the bifurcation parameter, we investigate the local asymptotic stability of the positive equilibrium and show the existence of periodic solutions bifurcating from the positive equilibrium. Then, we derive the precise formulae to determine the Hopf bifurcation direction and the stability of the bifurcating periodic solutions by using the normal form theory and the center manifold theorem. Numerical simulation results are also included to support our theoretical analysis.

  • Referencias bibliográficas
    • 1. Guan, X., Chen, F.: Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect...
    • 2. Sun, G., Wei, W.: The qualitative analysis of commensal symbiosis model of two populations. Math. Theory Appl. 23(3), 65–68 (2003)
    • 3. Sun, G.: Qualitative analysis on two populations amensalism model. J. Jiamusi Univ. (Natl. Sci. Ed.) 21(3), 283–286 (2003)
    • 4. Liu, Y., Xie, X., Lin, Q.: Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka-Volterra...
    • 5. Prasad, B., Ramacharyulu, N.: On the stability of a four species syn eco-system with commensal preypredator pair with prey-predator pair...
    • 6. Lei, C.: Dynamic behaviors of a stage-structured commensalism system. Adv. Differ. Equ. 301, 1–20 (2018)
    • 7. Chen, F., He, W., Han, R.: On discrete amensalism model of Lotka-Volterra. J. Beihua Univ. 16(2), 141–144 (2015)
    • 8. Wu, R.: A two species amensalism model with non-monotonic functional response. Commun. Math. Biol. Neurosci. 19, 1–10 (2016)
    • 9. Luo, D., Wang, Q.: Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect on the first species....
    • 10. Luo, D., Wang, Q.: Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species. Appl. Math....
    • 11. Chen, F., Zhang, M., Han, R.: Existence of positive periodic solution of a discrete Lotka-Volterra amensalism model. J. Shenyang Univ....
    • 12. Lin, Q., Zhou, X.: On the existence of positive periodic solution of a amensalism model with Holling II functional response. Commun. Math....
    • 13. Xie, X., Chen, F., He, M.: Dynamic behaviors of two species amensalism model with a cover for the first species. J. Math. Comput. Sci....
    • 14. Wu, R., Zhao, L., Lin, Q.: Stability analysis of a two species amensalism model with Holling II functional response and a cover for the...
    • 15. Chen, B.: Dynamic behaviors of a non-selective harvesting Lotka-Volterra amensalism model incorporating partial closure for the populations....
    • 16. Zhang, J.: Bifurcated periodic solutions in an amensalism system with strong generic delay kernel. Math. Methods Appl. Sci. 36(1), 113–124...
    • 17. Zhang, Z.: Stability and bifurcation analysis for an amensalism system with delays. Math. Numer. Sinica 30(2), 213–224 (2008)
    • 18. Misra, O., Sinha, P., Sikarwar, C.: Dynamical study of a prey-predator system with a commensal species competing with prey species: effect...
    • 19. Agarwal, R., O’Regan, D., Saker, S.: Oscillation and Stability of Delay Models in Biology. Springer (2014)
    • 20. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)
    • 21. Niu, B., Jiang, W.: Nonresonant Hopf-Hopf bifurcation and a chaotic attractor in neutral functional differential equations. J. Math. Anal....
    • 22. Yuan, R., Jiang, W., Wang, Y.: Saddle-node-Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting....
    • 23. Wang, H., Jiang, W., Ding, Y.: Bifurcation phenomena and control analysis in class-B laser system with delayed feedback. Nonlinear Dyn....
    • 24. Su, Y., Zou, X.: Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition....
    • 25. Wang, C., Wei, J.: Hopf bifurcations for neutral functional differential equations with infinite delays. Funkcial. Ekvac. 62(1), 95–127...
    • 26. Chen, S., Shen, Z., Wei, J.: Stability and bifurcation in a diffusive logistic population model with multiple delays. Int. J. Bifur. Chaos...
    • 27. Zhang, C., Zhang, Y., Zhang, B.: A model in a coupled system of simple neural oscillators with delays. J. Comput. Appl. Math. 229(1),...
    • 28. Yan, X., Chu, Y.: Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system. J. Comput. Appl. Math. 196(1),...
    • 29. Liao, M., Xu, C., Tang, X.: Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay. Commun....
    • 30. Beddington, J.: Mutual interference between parasites or predators and its effect on searching efciency. J. Anim. Ecol. 44, 331–340 (1975)
    • 31. DeAngelis, D., Goldstein, R., O’Neill, R.: A model for trophic interaction. Ecology 56, 881–892 (1975)
    • 32. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)
    • 33. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, New Jersey (1973)
    • 34. Ruan, S.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart....
    • 35. Wei, J., Wang, H., Jiang, W.: Theory and Application of Bifurcation Theioy for Delay Differential Equations. Science Press, Beijing (2012)....
    • 36. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
    • 37. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)
    • 38. Song, Y., Han, M., Wei, J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Phys. D 200(3), 185–204...
    • 39. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1991)
    • 40. Yi, F.: Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like...
    • 41. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62(3), 291–331 (2011)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno