Ir al contenido

Documat


Nonlinear Dynamical Analysis and Optimal Control Strategies for a New Rumor Spreading Model with Comprehensive Interventions

  • Li, Tingting [1] ; Guo, Youming [1]
    1. [1] Guilin University of Technology

      Guilin University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00520-7
  • Enlaces
  • Resumen
    • In the current era, information dissemination is more convenient, the harm of rumors is more serious than ever. At the beginning of 2020, COVID-19 is a biochemical weapon made by a laboratory, which has caused a very bad impact on the world. It is very important to control the spread of these untrue statements to reduce their impact on people’s lives. In this paper, a new rumor spreading model with comprehensive interventions (background detection, public education, official debunking, legal punishment) is proposed for qualitative and quantitative analysis. The basic reproduction number with important biological significance is calculated, and the stability of equilibria is proved. Through the optimal control theory, the expression of optimal control pairs is obtained. In the following numerical simulation, the optimal control under 11 control strategies are simulated. Through the data analysis of incremental costeffectiveness ratio and infection averted ratio of all control strategies, if we consider the control problem from different perspectives, we will get different optimal control strategies. Our results provide a flexible control strategy for the security management department.

  • Referencias bibliográficas
    • 1. Zhu, L., Zhao, H., Wang, H.: Partial differential equation modeling of rumor propagation in complex networks with higher order of organization....
    • 2. Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194– 1197 (2010)
    • 3. Zhang, L., Chen, K., Jiang, H., Zhao, J.: How the health rumor misleads people’s perception in a public health emergency: lessons from...
    • 4. Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 204(4963), 1118 (1964)
    • 5. Maki, D.P., Thompson, M.: Mathematical Models and Applications: With Emphasis on the Social, Life, and Management Sciences. Prentice-Hall,...
    • 6. Kandhway, K., Kuri, J.: Optimal control of information epidemics modeled as Maki Thompson rumors. Commun. Nonlinear Sci. 19(12), 4135–4147...
    • 7. Zhao, L., Cui, H., Qiu, X., et al.: SIR rumor spreading model in the new media age. Physica A 392(4), 995–1003 (2013)
    • 8. Chen, S., Jiang, H., Li, L., Li, J.: Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous...
    • 9. Huo, L., Wang, L., Zhao, X.: Stability analysis and optimal control of a rumor spreading model with media report. Physica A 517, 551–562...
    • 10. Tian, Y., Ding, X.: Rumor spreading model with considering debunking behavior in emergencies. Appl. Math. Comput. 363, 124599 (2019)
    • 11. Zhu, L., Wang, B.: Stability analysis of a SAIR rumor spreading model with control strategies in online social networks. Inf. Sci. 526,...
    • 12. Zhao, L., Xie, W., Gao, H.O., et al.: A rumor spreading model with variable forgetting rate. Physica A 392(23), 6146–6154 (2013)
    • 13. Yu, S., Yu, Z., Jiang, H., Li, J.: Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social...
    • 14. Yang, S., Jiang, H., Hu, C., Yu, J., Li, J.: Dynamics of the rumor-spreading model with hesitation mechanism in heterogenous networks...
    • 15. Yu, S., Yu, Z., Jiang, H., Mei, X., Li, J.: The spread and control of rumors in a multilingual environment. Nonlinear Dyn. 100, 2933–2951...
    • 16. Choi, S., Jung, E.: Optimal tuberculosis prevention and control strategy from a mathematical model based on real data. Bull. Math. Biol....
    • 17. Lemos-Paião, A.P., Silva, C.J., Torres, D.F.M.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318,...
    • 18. Agusto, F.B., Khan, M.A.: Optimal control strategies for dengue transmission in Pakistan. Math. Biosci. 305, 102–121 (2018)
    • 19. Li, T., Guo, Y.: Optimal control of an online game addiction model with positive and negative media reports. J. Appl. Math. Comput. 66,...
    • 20. Yosyingyong, P., Viriyapong, R.: Global stability and optimal control for a hepatitis B virus infection model with immune response and...
    • 21. Das, D.K., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math....
    • 22. Khan, M.A., Shah, S.W., Ullah, S., Gómez-Aguilar, J.F.: A dynamical model of asymptomatic carrier zika virus with optimal control strategies....
    • 23. Kheiri, H., Jafari, M.: Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing. J. Appl. Math....
    • 24. Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 59(4), 2379–2389...
    • 25. Ullah, S., Khan, M.A.: Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control...
    • 26. Chen, S.B., Soradi-Zeid, S., Jahanshahi, H., et al.: Optimal control of time-delay fractional equations via a joint application of radial...
    • 27. Chen, S.B., Soradi-Zeid, S., Alipour, M., et al.: Optimal control of nonlinear time-delay fractional differential equations with Dickson...
    • 28. Khan, M.A., Shah, S.W., Ullah, S., Gomez-Aguilar, J.F.: A dynamical model of asymptomatic carrier zika virus with optimal control strategies....
    • 29. Jan, R., Khan, M.A., Gomez-Aguilar, J.F.: Asymptomatic carriers in transmission dynamics of dengue with control interventions. Optim....
    • 30. Ullah, S., Khan, M.A., Gomez-Aguilar, J.F.: Mathematical formulation of hepatitis B virus with optimal control analysis. Optim. Control...
    • 31. Bonyah, E., Khan, M.A., Okosun, K.O., Gomez-Aguilar, J.F.: On the co-infection of dengue fever and zika virus. Optim. Control Appl. Methods...
    • 32. Alsaeedi, A., Al-Sarem, M.: Detecting rumors on social media based on a CNN deep learning technique. Arab. J. Sci. Eng. 45, 10813–10844...
    • 33. Wang, Q., Yang, X., Xi, W.: Effects of group arguments on rumor belief and transmission in online communities: an information cascade...
    • 34. Heffernan, J.M., Smith, R.J., Wahl, L.M.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005)
    • 35. Driessche, P.V., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission....
    • 36. LaSalle, J.P.: The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1976)
    • 37. Pontryagin, L., Boltyanskii, V.G., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)
    • 38. Bonyah, E., Khan, M.A., Okosun, K.O., Gomez-Aguilar, J.F.: Modelling the effects of heavy alcohol consumption on the transmission dynamics...
    • 39. Sana, M., Saleem, R., Manaf, A., Habib, M.: Varying forward backward sweep method using RungeKutta, Euler and Trapezoidal scheme as applied...
    • 40. McAsey, M., Mou, L.B., Han, W.M.: Convergence of the forward-backward sweep method in optimal control. Comput. Optim. Appl. 53(1), 207–226...
    • 41. Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes...
    • 42. Atangana, A., Khan, M.A., Fatmawati.: Modeling and analysis of competition model of bank data with fractal-fractional Caputo–Fabrizio...
    • 43. Barrea, A., Hernández, M.E.: Optimal control of a delayed breast cancer stem cells nonlinear model. Optim. Control Appl. Methods 37(2),...
    • 44. Bonyah, E., Gómez-Aguilar, J.F., Adu, A.: Stability analysis and optimal control of a fractional human African trypanosomiasis model....
    • 45. The 43rd statistical report on internet development in China. http://www.cac.gov.cn. Accessed 28 Feb 2019
    • 46. Blayneh, K.W., Gumel, A.B., Lenhart, S.: Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull. Math....
    • 47. Momoh, A.A., Fügenschuh, A.: Optimal control of intervention strategies and cost effectiveness analysis for a zika virus model. Oper....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno