Ir al contenido

Documat


Exact solutions to cubic Duffing equation for a nonlinear electrical circuit

  • Autores: Alvaro H. Salas S., Jairo E. Castillo H.
  • Localización: Visión electrónica, ISSN 1909-9746, ISSN-e 2248-4728, Vol. 8, Nº. 1, 2014, págs. 46-53
  • Idioma: inglés
  • DOI: 10.14483/22484728.7861
  • Enlaces
  • Resumen
    • This work provides an exact solution to a cubic Duffing oscillator equation with initial conditions and bounded periodic solutions. This solution is expressed in terms of the Jacobi elliptic function (cn). This exact solution is used as a seed to give a good analytic approximate solution to a nonlinear equation that describes a nonlinear electrical circuit. This last equation is solved numerically and compared with the analytic solution obtained from solving the cubic Duffing equation. It is suggested that the methodology used herein may be useful in the study of other nonlinear problems described by differential equations of the form zŒŒ = F(z) , F(z) being an odd function in the sense thaFt (z) may be approximated by an appropriate solution to a cubic Duffing oscillator equation. In particular, the exact solution may be applied in the study of the cubic nonlinear Schrodinger equation, which is reduced to a cubic Duffing oscillator equation by means of a travelling wave transformation.

  • Referencias bibliográficas
    • A .N. Nayfeth, D.T. Mook, “Non-linear oscillations”. New York: John Wiley,1973.
    • A .I. Maimistov,“Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifthorder Duffing model”,...
    • S. Morfa, J.C. Comte, "A nonlinear oscilators netwok devoted to image processing", International Journal of Bifurcation and Chaos,...
    • Yi Fang Liu, Guo Rong Li, "Matter wave soliton solution of the cubicquintic nonlinear Schrodinger equation with an anharmonic potential",...
    • Y Geng, J Li, L Zhang, "Exact explicit traveling wave solutions for two nonlinear Schrodinger type equatios" Applied Mathematics and...
    • R .E. Mickens. "Nonlinear oscillations", Cambridge
    • University Press 1981, page 7. [7] E . Gluskin, "A nonlinear resistor and nonlinear inductor using a nonlinear capacitor", Journal...
    • W. A. Edson, "Vacuum tube oscillators", New York: Wiley, pp 408-412, 1953.
    • D.S. Wang, X. Zeng, Y.Q. Ma, "Exact vortex solitons in a quasi-two-dimensional Bose-Einstein condensate with spatially inhomogeneous cubic-quintic...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno