Ir al contenido

Documat


On fixed point index theory for the sum of operators and applications to a class of ODEs and PDEs

  • Georgiev Georgiev, Svetlin [1] ; Mebarki, Karima [2]
    1. [1] Sofia University

      Sofia University

      Bulgaria

    2. [2] University of Béjaïa

      University of Béjaïa

      Argelia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 2, 2021, págs. 259-294
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.13248
  • Enlaces
  • Resumen
    • The aim of this work is two fold: first  we  extend some results concerning the computation of the fixed point index for the sum of an expansive mapping and a $k$-set contraction  obtained in \cite{DjebaMeb, Svet-Meb}, to  the case of the sum $T+F$, where $T$ is a mapping such that $(I-T)$ is Lipschitz invertible and $F$ is a $k$-set contraction.  Secondly, as  illustration of some our theoretical results,  we study  the existence of positive solutions  for two classes of differential equations, covering a class of first-order ordinary differential equations (ODEs for short) posed on the positive half-line as well as  a class of  partial differential equations (PDEs for short).

  • Referencias bibliográficas
    • S. Benslimane, S. G. Georgiev and K. Mebarki, Expansion-compression fixed point theorem of Leggett-Williams type for the sum of two operators...
    • G. Cain and M. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces, Pacific J. Math. 39 (1971), 581-592....
    • S. Djebali and K. Mebarki, Fixed point index theory for perturbation of expansive mappings by k-set contraction, Topol. Meth. in Nonlinear...
    • S. Djebali and K. Mebarki, Fixed point index on translates of cones and applications, Nonlinear Studies 21, no. 4 (2014), 579-589.
    • D. Edmunds, Remarks on nonlinear functional equations, Math. Ann. 174 (1967), 233-239. https://doi.org/10.1007/BF01360721
    • S. G. Georgiev and K. Mebarki, Existence of positive solutions for a class ODEs, FDEs and PDEs via fixed point index theory for the sum of...
    • S. G. Georgiev and K. Mebarki, Existence of solutions for a class of IBVP for nonlinear parabolic equations via the fixed point index theory...
    • D. Guo, Y. J. Cho and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Shangdon Science and Technology Publishing Press, Shangdon,...
    • M. Nashed and J. Wong, Some variants of a fixed point theorem Krasnoselskii and applications to nonlinear integral equations, J. Math. Mech....
    • A. Polyanin and A. Manzhirov, Handbook of integral equations, CRC Press, 1998. https://doi.org/10.1201/9781420050066
    • V. Sehgal and S. Singh, A fixed point theorem for the sum of two mappings, Math. Japonica 23 (1978), 71-75.
    • T. Xiang and R. Yuan, A class of expansive-type Krasnosel'skii fixed point theorems, Nonlinear Anal. 71, no. 7-8 (2009), 3229-3239. https://doi.org/10.1016/j.na.2009.01.197
    • T. Xiang and S. G. Georgiev, Noncompact-type Krasnoselskii fixed-point theorems and their applications, Math. Methods Appl. Sci. 39, no. 4...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno