Ir al contenido

Documat


A biased-randomized iterated local search for the vehicle routing problem with optional backhauls

  • Julio C. Londoño [1] ; Rafael D. Tordecilla [3] ; Leandro do C. Martins [2] ; Angel A. Juan [2] Árbol académico
    1. [1] Universidad del Valle (Colombia)

      Universidad del Valle (Colombia)

      Colombia

    2. [2] Universitat Oberta de Catalunya

      Universitat Oberta de Catalunya

      Barcelona, España

    3. [3] Universitat Oberta de Catalunya, España; Universidad de La Sabana, Colombia
  • Localización: Top, ISSN-e 1863-8279, ISSN 1134-5764, Vol. 29, Nº. 2, 2021, págs. 387-416
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The vehicle routing problem with backhauls integrates decisions on product delivery with decisions on the collection of returnable items. In this paper, we analyze a scenario in which collection of items is optional—but subject to a penalty cost. Both transportation costs and penalties associated with non-collecting decisions are considered. A mixed-integer linear model is proposed and solved for small instances. Also, a metaheuristic algorithm combining biased randomization techniques with iterated local search is introduced for larger instances. Our approach yields cost savings and is competitive when compared to other state-of-the-art approaches.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno