Ir al contenido

Documat


Deformations of \mathcal {W} algebras via quantum toroidal algebras

  • B. Feigin [3] ; M. Jimbo [1] ; E. Mukhin [2] ; I. Vilkoviskiy [4]
    1. [1] Rikkyo University

      Rikkyo University

      Japón

    2. [2] Purdue University

      Purdue University

      Township of Wabash, Estados Unidos

    3. [3] National Research University Higher School of Economics; Landau Institute for Theoretical Physics, Rusia
    4. [4] Skolkovo Institute of Science and Technology; National Research University Higher School of Economics, Rusia
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 4, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-021-00663-0
  • Enlaces
  • Resumen
    • We study the uniform description of deformed W algebras of type A including the supersymmetric case in terms of the quantum toroidal gl1 algebra E. In particular, we recover the deformed affine Cartan matrices and the deformed integrals of motion. We introduce a comodule algebra K over E which gives a uniform construction of basic deformed W currents and screening operators in types B,C,D including twisted and supersymmetric cases. We show that a completion of algebra K contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except D(2)ℓ+1. We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno