Ir al contenido

Documat


Stable characters from permutation patterns

  • Christian Gaetz [1] ; Christopher Ryba [2]
    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

    2. [2] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 4, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-021-00692-9
  • Enlaces
  • Resumen
    • For a fixed permutation σ∈Sk, let Nσ denote the function which counts occurrences of σ as a pattern in permutations from Sn. We study the expected value (and dth moments) of Nσ on conjugacy classes of Sn and prove that the irreducible character support of these class functions stabilizes as n grows. This says that there is a single polynomial in the variables n,m1,…,mdk which computes these moments on any conjugacy class (of cycle type 1m12m2⋯) of any symmetric group. This result generalizes results of Hultman (Adv Appl Math 54:1–10, 2014) and of Gill (The k-assignment polytope, phylogenetic trees, and permutation patterns, Ph.D. Thesis at Linköping University, pp 103–125, 2013), who proved the cases (d,k)=(1,2) and (1, 3) using ad hoc methods. Our proof is, to our knowledge, the first application of partition algebras to the study of permutation patterns.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno