Ir al contenido

Documat


On properness of K-moduli spaces and optimal degenerations of Fano varieties

  • Harold Blum [1] ; Daniel Halpern-Leistner [2] ; Yuchen Liu [3] ; Chenyang Xu [4]
    1. [1] Stony Brook University

      Stony Brook University

      Town of Brookhaven, Estados Unidos

    2. [2] Cornell University

      Cornell University

      City of Ithaca, Estados Unidos

    3. [3] Northwestern University

      Northwestern University

      Township of Evanston, Estados Unidos

    4. [4] Princeton University; MIT, USA; Beijing International Center for Mathematical Research, China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 4, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-021-00694-7
  • Enlaces
  • Resumen
    • We establish an algebraic approach to prove the properness of moduli spaces of K-polystable Fano varieties and reduce the problem to a conjecture on destabilizations of K-unstable Fano varieties. Specifically, we prove that if the stability threshold of every K-unstable Fano variety is computed by a divisorial valuation, then such K-moduli spaces are proper. The argument relies on studying certain optimal destabilizing test configurations and constructing a Θ-stratification on the moduli stack of Fano varieties.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno