Ir al contenido

Documat


Divided symmetrization and quasisymmetric functions

  • Philippe Nadeau [2] ; Vasu Tewari [1]
    1. [1] University of Hawaii at Manoa

      University of Hawaii at Manoa

      Estados Unidos

    2. [2] Université Claude Bernard Lyon, Francia
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 27, Nº. 4, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00029-021-00695-6
  • Enlaces
  • Resumen
    • Motivated by a question in Schubert calculus, we study the interplay of quasisymmetric polynomials with the divided symmetrization operator, which was introduced by Postnikov in the context of volume polynomials of permutahedra. Divided symmetrization is a linear form which acts on the space of polynomials in n indeterminates of degree n−1. We first show that divided symmetrization applied to a quasisymmetric polynomial in m indeterminates can be easily determined. Several examples with a strong combinatorial flavor are given. Then, we prove that the divided symmetrization of any polynomial can be naturally computed with respect to a direct sum decomposition due to Aval–Bergeron–Bergeron, involving the ideal generated by positive degree quasisymmetric polynomials in n indeterminates.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno