Ir al contenido

Documat


Creation of Limit Cycles in Piecewise Smooth Vector Fields Tangent to Nested Tori

  • Carvalho, Tiago [1] ; Fernando Gonçalves, Luiz [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidade Estadual Paulista

      Universidade Estadual Paulista

      Brasil

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00491-9
  • Enlaces
  • Resumen
    • The main goal of this paper is to present the behavior generated by piecewise smooth vector fields tangent to foliations. We consider two smooth foliations F1 and F2 that are coupled to produce a foliation composed by nested topological tori. Moreover, a piecewise smooth vector field composed of periodic orbits and tangent to these tori is considered. We perturb this piecewise vector field (and, consequently, the foliations) and the birth of either finite or infinitely many limit cycles for the 3D piecewise smooth vector field is observed.

  • Referencias bibliográficas
    • 1. Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillators. Adiwes International Series in Physics. Pergamon Press (1966)
    • 2. Arnold, V.I.: Mathematical methods of classical mechanics, volume 60 of Graduate Texts in Mathematics. Springer, New York (1978)
    • 3. Belev, S.A., Tyurin, N.A.: Nontoric foliations by Lagrangian tori of toric Fano varieties. Math. Notes 87(1), 43–51 (2010)
    • 4. Buzzi, C.A., de Carvalho, T., Teixeira, M.A.: Birth of limit cycles bifurcating from a nonsmooth center. J. Math. Pures Appl. 102(1), 36–47...
    • 5. Camacho, C., Lins Neto, A.: Geometric Theory of Foliations, 1st edn. Birkhauser (1985)
    • 6. Carvalho, T., Cristiano, R., Gonçalves, L.F., Tonon, D.: Global analysis of the dynamics of a mathematical model to intermittent HIV treatment....
    • 7. Carvalho, T., Novaes, D.D., Gonçalves, L.F.: Sliding Shilnikov connection in Filippov-type predatorprey model. Nonlinear Dyn. 100, 2973–2987...
    • 8. Carvalho, T., Teixeira, M.A.: On piecewise smooth vector fields tangent to nested tori. J. Differ. Equ. 261(7), 4008–4029 (2016)
    • 9. Chicone, C.: Ordinary Differential Equations with Applications, volume 34 of Texts in Applied Mathematics. Springer, New York (1999)
    • 10. Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)
    • 11. di Bernardo, M., Budd, C.J., Champneys, A.R. Kowalczyk, P.: Piecewise-smooth Dynamical Systems: Theory and Applications, 1st edn, vol...
    • 12. di Bernardo, M., Johansson, K.H., Vasca, F.: Self-oscillations and sliding in relay feedback systems: symmetry and bifurcations. Int....
    • 13. Ekeland, I.: Discontinuites de champs Hamiltoniens et existence de solutions optimales en calcul des variations. Publications Mathématiques,...
    • 14. Erdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Nonlinear...
    • 15. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Mathematics and its Applications, 1st edn. Kluwer Academic...
    • 16. Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems, 1st edn. Springer, Berlin (2004)
    • 17. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Physica D 241(22), 1826–1844 (2012)
    • 18. Panazzolo, D., da Silva, P.R.: Regularization of discontinuous foliations: blowing up and sliding conditions via Fenichel theory. J. Differ....
    • 19. Scofield, P.D.: Some deformations of the Hopf foliation are also Kähler. Proc. Am. Math. Soc. 119(1), 251–253 (1993)
    • 20. Simpson, D.J.W.: Bifurcations in Piecewise-Smooth Continuous Systems, volume 69 of World Scientific Series on Nonlinear Science, Series...
    • 21. Tsukada, K.: The canonical foliation of a compact generalized Hopf manifold. Differ. Geom. Appl. 11(1), 13–28 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno