Ir al contenido

Documat


Dynamic Properties of the p-Laplacian Reaction–Diffusion Equation in Multi-dimensional Space

  • Zheng, Shuai [1] ; Li, Fushan [1]
    1. [1] Qufu Normal University

      Qufu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00494-6
  • Enlaces
  • Resumen
    • In this paper we study the p-Laplacian reaction–diffusion equation ut − div(|∇u| p−2∇u) = k(t) f (u) subject to appropriate initial and boundary conditions. We show the positive solution u(x , t) exists globally, under the conditions on f , k and the boundary conduction function. It is proved that the solution blows up at finite time, for some initial data and additional energy type conditions, by establishing accurate estimates and using the Sobolev inequality in multi-dimensional space.

  • Referencias bibliográficas
    • 1. Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97, 3–22 (1998)
    • 2. Ding, J., Hu, H.: Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions....
    • 3. Ding, J., Shen, X.: Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions. Math. Methods...
    • 4. Fang, Z., Wang, Y.: Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux....
    • 5. Hu, B., Yin, H.M.: Semi-linear parabolic equations with prescribed energy. Rend. Circ. Mat. Palermo 44, 479–505 (1995)
    • 6. Lankeit, J., Viglialoro, G.: Global existence and boundedness of solutions to a chemotaxis-consumption model with singular sensitivity....
    • 7. Li, F., Li, J.: Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary...
    • 8. Li, F., Li, J.: Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions. Bound....
    • 9. Liang, F.: Blow-up phenomena for a system of semilinear heat equations with nonlinear boundary flux. Nonlinear Anal. 75, 2189–2198 (2012)
    • 10. Marras, M., Vernier Piro, V.: Reaction-diffusion problems under non-local boundary conditions with blow-up solutions. J. Inequal. Appl....
    • 11. Payne, L.E., Schaefer, P.W.: Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl. Anal. 85, 1301–1311 (2006)
    • 12. Payne, L.E., Philippin, G.A., Vernier Piro, S.: Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I....
    • 13. Payne, L.E., Philippin, G.A., Vernier Piro, S.: Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II....
    • 14. Payne, L.E., Philippin, G.A.: Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary...
    • 15. Payne, L.E., Philippin, G.A.: Blow-up phenomena parabolic problem under with time-dependent coefficients under Dirichlet type boundary...
    • 16. Philippin, G.A.: Blow-up phenomena for a class of fourth-order parabolic problems. Proc. Am. Math. Soc. 143, 2507–2513 (2015)
    • 17. Quittner, R., Souplet, P.: Superlinear parabolic problems. In: Blow-Up, Global Existence and Steady States. Birkhuser Advanced Texts....
    • 18. Straughan, B.: Explosive Instabilities in Mechanics. Springer, Berlin (1998)
    • 19. Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in L p. Indiana Univ. Math. J. 29, 79–102 (1980)
    • 20. Weissler, F.B.: Existence and nonexistence of global solutions for a heat equation. Isr. J. Math. 38(1–2), 29–40 (1981)
    • 21. Zhang, J., Li, F.: Global existence and blow-up phenomena for divergence form parabolic equation with time-dependent coefficient in multidimensional...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno