Warszawa, Polonia
Let T be a Calderón–Zygmund operator on Rd. We prove the existence of a constant CT,d<∞ such that for any weight w on Rd satisfying Muckenhoupt's condition A1, we have w({x∈Rd:|Tf(x)|>w(x)})≤CT,d[w]A1∫Rdfdx.
The linear dependence on [w]A1, the A1 characteristic of w, is optimal. The proof exploits the associated dimension-free inequalities for dyadic shifts.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados