Ir al contenido

Documat


Resumen de Overview of the EmoEvalEs task on emotion detection for Spanish at IberLEF 2021

Luis Alfonso Ureña López Árbol académico, María Teresa Martín Valdivia Árbol académico, Flor Miriam Plaza del Arco Árbol académico, Salud M. Jiménez Zafra Árbol académico, Arturo Montejo Ráez Árbol académico, M. Dolores Molina González

  • español

    Este artículo presenta la tarea EmoEvalEs, organizada en IberLEF 2021, en el marco del de la 37 edición de la Conferencia Internacional de la Sociedad Española para el Procesamiento del Lenguaje Natural. El objetivo de esta tarea es promover la Detección y Evaluación de Emociones en Español. Consiste en la clasificación de grano fino de los tweets del corpus EmoEvent en una de las siguientes siete clases: ira, asco, miedo, alegría, tristeza, sorpresa u otros. En esta edición, se registraron 70 equipos, 15 enviaron resultados y 11 presentaron art culos describiendo sus sistemas. La mayoría de los equipos experimentaron con redes neuronales, siendo Transformers el modelo más utilizado. Cabe destacar que pocos equipos consideraron también las características de ofensividad y evento que se proporcionaron en el corpus aparte de los textos de los tweets.

  • English

    This paper presents the EmoEvalEs shared task, organized at IberLEF 2021, as part of the 37th International Conference of the Spanish Society for Natural Language Processing (SEPLN 2021). The aim of this task is to promote the Emotion detection and Evaluation for Spanish. It consists of a fine-grained emotion classification of tweets from the EmoEvalEs corpus in one of these seven classes: anger, disgust, fear, joy, sadness, surprise, or others. In this edition, 70 teams registered, 15 submitted results and 11 presented papers describing their systems. Most teams experimented with neural networks, being Transformers the most widely used model. It should be noted that few of them also considered the features of offensiveness and event that were provided in the corpus apart from the tweet texts.


Fundación Dialnet

Mi Documat