Ir al contenido

Documat


Early Prediction of Student Learning Performance Through Data Mining: A Systematic Review

  • Javier López-Zambrano [2] ; Juan Alfonso Lara Torralbo [3] Árbol académico ; Cristóbal Romero [1] Árbol académico
    1. [1] Universidad de Córdoba

      Universidad de Córdoba

      Cordoba, España

    2. [2] Escuela Superior Politécnica Agropecuaria de Manabí
    3. [3] Madrid Open University
  • Localización: Psicothema, ISSN-e 1886-144X, ISSN 0214-9915, Vol. 33, Nº. 3, 2021 (Ejemplar dedicado a: Monográfico Mariano Yela), págs. 456-465
  • Idioma: inglés
  • DOI: 10.7334/psicothema2021.62
  • Títulos paralelos:
    • Predicción Temprana del Rendimiento Académico con Minería de Datos: una Revisión Sistemátic
  • Enlaces
  • Resumen
    • español

      Antecedentes: la predicción temprana del rendimiento académico mediante técnicas de minería de datos es un campo de estudio emergente, que se pretende analizar por medio de este artículo de revisión. Método: se ha revisado la literatura existente por medio de un proceso de búsqueda de artículos en los principales motores de búsqueda, y de selección de los mismos de acuerdo con ciertos criterios. Resultados: el proceso de búsqueda reportó 133 resultados, de los cuales 82 fueron seleccionados para dar respuesta a las preguntas de investigación planteadas. Se han agrupado los trabajos encontrados para poder dar respuesta a las preguntas por tipo de sistema educativo, técnicas de minería de datos aplicadas, variables empleadas y grado de anticipación con el que se puede predecir. Conclusiones: la mayor parte de los trabajos publicados corresponden a sistemas de aprendizaje en línea y presenciales-tradicionales en educación secundaria y terciaria; los algoritmos más utilizados el J48, Random Forest, SVM, Naive Bayes (clasificación), y la regresión logística y lineal (regresión); los datos de evaluación y los obtenidos de la interacción del estudiante con el entorno de aprendizaje son las variables más relevantes; finalmente, la anticipación en la predicción varía según el tipo de sistema educativo.

    • English

      Background: Early prediction of students’ learning performance using data mining techniques is an important topic these days. The purpose of this literature review is to provide an overview of the current state of research in that area. Method: We conducted a literature review following a two-step procedure, looking for papers using the major search engines and selection based on certain criteria. Results: The document search process yielded 133 results, 82 of which were selected in order to answer some essential research questions in the area. The selected papers were grouped and described by the type of educational systems, the data mining techniques applied, the variables or features used, and how early accurate prediction was possible. Conclusions: Most of the papers analyzed were about online learning systems and traditional face-to-face learning in secondary and tertiary education; the most commonly-used predictive algorithms were J48, Random Forest, SVM, and Naive Bayes (classification), and logistic and linear regression (regression). The most important factors in early prediction were related to student assessment and data obtained from student interaction with Learning Management Systems. Finally, how early it was possible to make predictions depended on the type of educational system.

  • Referencias bibliográficas
    • Aguiar, E., Ambrose, G. A. A., Chawla, N. V., Goodrich, V., & Brockman, J. (2014). Engagement vs Performance: Using Electronic Portfolios...
    • Aljohani, N. R., Fayoumi, A., & Hassan, S.-U. (2019). Predicting at-risk students using clickstream data in the virtual learning environment....
    • Ameen, A. O., Alarape, M. A., & Adewole, K. S. (2019). Students’ academic performance and dropout prediction. Malaysian Journal of Computing,...
    • Araújo, A., Leite, C., Costa, P., & Costa, M. J. (2019). Early identification of first-year students at risk of dropping out of high-school...
    • Barnes, T., Desmarais, M., Romero, C., & Ventura, S. (2009, July). Educational Data Mining 2009 [Conference presentation]. 2nd International...
    • Berens, J., Schneider, K., Gortz, S., Oster, S., & Burghoff, J. (2019). Early detection of students at risk-predicting student dropouts...
    • Bogarín, A., Cerezo, R., & Romero, C. (2018). Discovering learning processes using Inductive Miner: A case study with Learning Management...
    • Bursać, M., Blagojević, M., & Milošević, D. (2019). Early prediction of student success based on data mining and artificial neural network....
    • Cano, A., & Leonard, J. D. (2019). Interpretable Multiview Early Warning System Adapted to Underrepresented Student Populations. IEEE...
    • Casey, K. (2017). Using Keystroke Analytics to Improve Pass-Fail Classifiers. Journal of Learning Analytics, 4(2), 189-211. https://doi. org/10.18608/jla.2017.42.14
    • Castro, F., Vellido, A., Nebot, À., & Mugica, F. (2007). Applying Data Mining Techniques to e-Learning Problems. In L. C. Jain, R. A....
    • Chau, L. M., Chau, V. T. N., & Phung, N. H. (2018). On Temporal Cluster Analysis for Early Identifying In-trouble Students in an Academic...
    • Chen, F., & Cui, Y. (2020). Utilizing student time series behaviour in learning management systems for early prediction of course performance....
    • Choi, S. P. M., Lam, S. S., Li, K. C., & Wong, B. T. M. (2018). Learning analytics at low cost: At-risk student prediction with clicker...
    • Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2018). Predicting at-risk university students in a virtual learning environment...
    • Chung, J. Y., & Lee, S. (2018). Dropout early warning systems for high school students using machine learning. Children and Youth Services...
    • Cui, Y., Chen, F., & Shiri, A. (2020). Scale up predictive models for early detection of at-risk students: A feasibility study. Information...
    • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. Artificial Intelligence Magazine,...
    • Felix, I., Ambrósio, A. P., LIMA, P. D. S., & Brancher, J. D. (2018, October). Data Mining for Student Outcome Prediction on Moodle: A...
    • Gitinabard, N., Xu, Y., Heckman, S., Barnes, T., & Lynch, C. F. (2019). How Widely Can Prediction Models be Generalized? An Analysis of...
    • Han, W., Jun, D., Xiaopeng, G., Qiaoye, Y., & Kangxu, L. (2017). Predicting Performance in a Small Private Online Course. In X. Hu, T....
    • Hlosta, M., Zdrahal, Z., & Zendulka, J. (2017). Ouroboros: Early identification of at-risk students without models based on legacy data....
    • Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. Internet...
    • Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan, J. R., & Baron, J. D. (2014). Early Alert of Academically At-Risk Students:...
    • Jiang, S., Williams, A. E., Schenke, K., Warschauer, M., & Dowd, D. O. (2014). Predicting MOOC Performance with Week 1 Behavior. In J....
    • Kostopoulos, G., Karlos, S., & Kotsiantis, S. (2019). Multiview Learning for Early Prognosis of Academic Performance: A Case Study. IEEE...
    • Kovačić, Z. (2010). Early Prediction of Student Success: Mining Students Enrolment Data. Proceedings of Informing Science & IT Education...
    • Krotseng, M. V. (1992). Predicting persistence from the student adaptation to college questionnaire: Early warning or siren song? Research...
    • Kuzilek, J., Hlosta, M., Herrmannova, D., Zdrahal, Z., & Wolff, A. (2015). OU Analyse: Analysing at-risk students at The Open University....
    • Li, H., Ding, W., & Liu, Z. (2020). Identifying at-risk k-12 students in multimodal online environments: A machine learning approach....
    • Liz-Domínguez, M., Caeiro-Rodríguez, M., Llamas-Nistal, M., & MikicFonte, F. (2019, June). Predictors and early warning systems in higher...
    • Lu, O. H. T., Huang, A. Y. Q., Huang, J. C. H., Lin, A. J. Q., & Yang, S. J. H. (2018). Applying Learning Analytics for the Early Prediction...
    • Macarini, L. A. B., Cechinel, C., Machado, M. F. B., Ramos, V. F. C., & Munoz, R. (2019). Predicting students success in blended learning-Evaluating...
    • Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an ìearly warning systemî for educators: A proof of concept. Computers...
    • Mbouzao, B., Desmarais, M. C., & Shrier, I. (2020). Early Prediction of Success in MOOC from Video Interaction Features. In I. Bittencourt,...
    • McMahon, B. M., & Sembiante, S. F. (2020). Re-envisioning the purpose of early warning systems: Shifting the mindset from student identification...
    • Miguéis, V. L., Freitas, A., García, P. J. V, & Silva, A. (2018). Early segmentation of students according to their academic performance:...
    • Mújica, D., Pérez Villalobos, A., Bernardo Gutiérrez, M. V., Cervero Fernández-Castañón A. B., & González-Pienda García, J. A. (2019)....
    • Na, K. S., & Tasir, Z. (2018). Identifying at-risk students in online learning by analysing learning behaviour: A systematic review. In...
    • Nik Nurul Hafzan, M. Y., Safaai, D., Asiah, M., Mohd Saberi, M., & Siti Syuhaida, S. (2019). Review on Predictive Modelling Techniques...
    • Nistor, N., & Neubauer, K. (2010). From participation to dropout: Quantitative participation patterns in online university courses. Computers...
    • Olivé, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2019). A Quest for a One-Size-Fits-All Neural Network: Early Prediction...
    • Ortigosa, A., Carro, R. M., Bravo-Agapito, J., Lizcano, D., Alcolea, J. J., & Blanco, Ó. (2019). From Lab to Production: Lessons Learnt...
    • Queiroga, E. M., Lopes, J. L., Kappel, K., Aguiar, M., Araújo, R. M., Munoz, R., Villarroel, R., & Cechinel, C. (2020). A learning analytics...
    • Razak, R. A., Omar, M., Ahmad, M., & Mara, P. (2018). A Student Performance Prediction Model Using Data Mining Technique. International...
    • Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3, 12-27....
    • Romero, C., & Ventura, S. (2019). Guest Editorial: Special Issue on Early Prediction and Supporting of Learning Performance. IEEE Transactions...
    • Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews:...
    • Costa, E. B., Fonseca, B., Almeida-Santana, M., Ferreira de Araújo, F., & Rego, J. (2017). Evaluating the effectiveness of educational...
    • Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi. org/10.1177/0002764213498851
    • Tranfield, D., Denyer, D. & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of...
    • Villa-Torrano, C., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., & GómezSánchez, E. (2020). Early prediction of studentsí efficiency during...
    • Vitiello, M., Walk, S., Helic, D., Chang, V., & Guetl, C. (2018). User behavioral patterns and early dropouts detection: Improved users...
    • Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students...
    • Wang, Z., Zhu, C., Ying, Z., Zhang, Y., Wang, B., Jin, X., & Yang, H. (2018). Design and Implementation of Early Warning System Based...
    • You, J. W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. The Internet and Higher...
    • Yu, L. C., Lee, C. W., Pan, H. I., Chou, C. Y., Chao, P. Y., Chen, Z. H., Tseng, S. F., Chan, C. L., & Lai, K. R. (2018). Improving early...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno