Ir al contenido

Documat


Hurwitz components of groups with socle PSL(3, q)

  • H.M. Mohammed Salih [1]
    1. [1] Department of Mathematics, Faculty of Science, Soran University Kawa St. Soran, Erbil, Iraq
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 36, Nº 1, 2021, págs. 51-62
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.36.1.51
  • Enlaces
  • Resumen
    • For a finite group G, the Hurwitz space Hinr,g(G) is the space of genus g covers of the Riemann sphere P1 with r branch points and the monodromy group G. In this paper, we give a complete list of some almost simple groups of Lie rank two. That is, we assume that G is a primitive almost simple groups of Lie rank two. Under this assumption we determine the braid orbits on the suitable Nielsen classes, which is equivalent to finding connected components in Hinr,g(G).

  • Referencias bibliográficas
    • [1] M. Aschbacher, On conjectures of Guralnick and Thompson, J. Algebra 135 (2) (1990), 277 – 343.
    • [2] M. Aschbacher, R. Guralnick, K. Magaard, Rank 3 permutation characters and primitive groups of low genus, preprint.
    • [3] M. Aschbacher, L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1) (1985), 44 – 80.
    • [4] D. Frohardt, R. Guralnick, K. Magaard, Genus 2 point actions of classical groups, preprint.
    • [5] D. Frohardt, R. Guralnick, K. Magaard, Genus 0 actions of groups of Lie rank 1, in “Arithmetic Fundamental Groups and Noncommutative Algebra”,...
    • [6] D. Frohardt, K. Magaard, Composition factors of monodromy groups, Ann. of Math. 154 (2) (2001), 327 – 345.
    • [7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.6.2, 2013. http://www.gap-system.org
    • [8] W. Gehao, “Genus Zero Systems for Primitive Groups of Affine Type”, PhD Thesis, University of Birmingham, 2011.
    • [9] R. M. Guralnick, J. G. Thompson, Finite groups of genus zero, J. Algebra 131 (1) (1990), 303 – 341.
    • [10] X. Kong, Genus 0, 1, 2 actions of some almost simple groups of lie rank 2, PhD Thesis, Wayne State University, 2011 . [11] K. Magaard,...
    • [12] H. Mohammed Salih, “Finite Groups of Small Genus”, PhD Thesis, University of Birmingham, 2014.
    • [13] H. Mohammed Salih, Connected components of affine primitive permutation groups, J. Algebra 561 (2020), 355 – 373.
    • [14] M. G. Neubauer, “On Solvable Monodromy Groups of Fixed Genus”, PhD Thesis, University of Southern California, 1989.
    • [15] T. Shih, A note on groups of genus zero, Comm. Algebra 19 (10) (1991), 2813 – 2826.
    • [16] H. Völklein, “Groups as Galois Groups”, Cambridge Studies in Advanced Mathematics, 53, Cambridge University Press, 1996.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno