Ir al contenido

Documat


A new approach for Volterra functional integral equations with non-vanishing delays and fractional Bagley-Torvik equation

  • Ghomanjani, Fateme [1]
    1. [1] Kashmar Higher Education Institute.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 4, 2021, págs. 885-903
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4010
  • Enlaces
  • Resumen
    • A numerical technique for Volterra functional integral equations (VFIEs) with non-vanishing delays and fractional Bagley-Torvik equation is displayed in this work. The technique depends on Bernstein polynomial approximation. Numerical examples are utilized to evaluate the accurate results. The findings for examples figs and tables show that the technique is accurate and simple to use.

  • Referencias bibliográficas
    • W. Ming and C. Huang, “Collocation methods for Volterra functional integral equations with non-vanishing delays”, Applied mathematics and...
    • Q. Huang, H. Xie, and H. Brunner, “The $hp$ discontinuous Galerkin method for delay differential equations with nonlinear Vanishing delay”,...
    • H. Xie, R. Zhang, and H. Brunner, “Collocation methods for general Volterra functional integral equations with vanishing delays”, SIAM journal...
    • Q. Huang, H. Xie, and H. Brunner, “Super convergence of a discontinuous Galerkin solutions for delay differential equations of pantograph...
    • K. Harada and E. Nakamae, “Application of the Bézier curve to data interpolation”, Computer-aided design, vol. 14, no. 1, pp. 55-59, 1982....
    • G. Nürnberger and F. Zeilfelder, “Developments in bivariate spline interpolation”, Journal of Computational and Applied Mathematics, vol....
    • J. Zheng, T. W. Sederberg, and R. W. Johnson, “Least squares methods for solving differential equations using Bézier control points”, Applied...
    • F. Ghomanjani and M. H. Farahi, “The Bézier control points method for solving delay differential equation”, Intelligent control and automation,...
    • F. Ghomanjani, M. H. Farahi, and M. Gachpazan, “Bézier control points method to solve constrained quadratic optimal control of time varying...
    • F. Ghomanjani and M. H. Farahi, “Optimal control of switched systems based on Bézier control points”, International journal of intelligent...
    • F. Ghomanjani, M. H. Farahi, and A. V. Kamyad, “Numerical solution of some linear optimal control systems with pantograph delays”, IMA journal...
    • L. J. Xie, C. L. Zhou, and S. Xu, “An effective numerical method to solve a class of nonlinear singular boundary value problems using improved...
    • H. L. Dastjerdi and M. N. Ahmadabadi, “Moving least squares collocation method for Volterra integral equations with proportional delay”, International...
    • E. Barkai, R. Metzler, and J. Klafter, “From continuous time random walks to the fractional Fokker-Planck equation”, Physical review E, vol....
    • D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation”. Water resources research,...
    • R. Hilfer, Ed., Applications of fractional calculus in physics. Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    • F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and fractional calculus in continuum...
    • K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. New York, NY: John Wiley &...
    • A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications”, Chaos: an interdisciplinary journal of nonlinear...
    • H. Ding and C. Li, “Numerical algorithms for the fractional diffusion-wave equation with reaction term”, Abstract and applied analysis, vol....
    • P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behavior of real materials”, Journal of applied mechanics,...
    • I. Podlubny, Fractional differential equations. San Diego, CA: Elsevier, 1999.
    • T. M. Atanackovic and D. Zorica, “On the Bagley–Torvik equation”, Journal of applied mechanics, vol. 80, no. 4, 2013. https://doi.org/10.1115/1.4007850
    • S. Esmaeili and M. Shamsi, “A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations”, Communications...
    • Ş. Yüzbaşı, “Numerical solution of the Bagley-Torvik equation by the Bessel collocation method”, Mathematical methods in the applied sciences,...
    • Y. Çenesiz, Y. Keskin, and A. Kurnaz, “The solution of the Bagley–Torvik equation with the generalized Taylor collocation method”, Journal...
    • T. Mekkaoui and Z. Hammouch, “Approximate analytical solutions to the Bagley-Torvik equation by the fractional iteration method”, Analele...
    • K. Diethelm, J. Ford, “Numerical solution of the Bagley-Torvik equation”, BIT numerical mathematics, vol. 42, pp. 490-507, 2002. https://doi.org/10.1023/A:1021973025166
    • S. Mashayekhi and M. Razzaghi, “Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation,” Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno