Ir al contenido

Documat


Total irregularity strength of some cubic graphs

  • Ibrahim, Muhammad [1] ; Khan, S. [1] ; Asim, Muhammad Ahsan [2] ; Waseem , Muhammad
    1. [1] Bahauddin Zakariya University

      Bahauddin Zakariya University

      Pakistán

    2. [2] Jazan Universty.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 40, Nº. 4, 2021, págs. 905-918
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-3715
  • Enlaces
  • Resumen
    • Let G = (V;E) be a graph. A total labeling ψ : V ⋃ E → {1, 2, ....k} is called totally irregular total k-labeling of G if every two distinct vertices u and v in V (G) satisfy wt(u) ≠wt(v); and every two distinct edges u1u2 and v1v2 in E(G) satisfy wt(u1u2) ≠ wt(v1v2); where wt(u) = ψ (u) + ∑uv∊E(G) ψ(uv) and wt(u1u2) = ψ(u1) + ψ(u1u2) + ψ(u2): The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by ts(G): In this paper, we determine the exact value of the total irregularity strength of cubic graphs.

  • Referencias bibliográficas
    • A. Ahmad, M. Bača, and M. K. Siddiqui, “On edge irregular total labeling of categorical product of two cycles”, Theory of computing systems,...
    • A. Ahmad, M. Ibrahim, and M. K. Siddiqui, “On the total irregularity strength of Generalized Petersen Graph”, Mathematical reports, vol. 18,...
    • A. Ahmad,M. Bača, Y. Bashir and M. K. Siddiqui, “Total edge irregularity strength of strong product of two paths”, Ars combinatoria, vol....
    • A. Ahmad, S. A. Bokhari, M. Imran, and A. Q. Baig, “Vertex irregular total labeling of cubic graphs”, Utilitas mathematica, vol. 91, pp. 287-299,...
    • O. Al-Mushayt, A. Ahmad, and M. K. Siddiqui, “On the total edge irregularity strength of hexagonal grid graphs”, Australasian journal of combinatorics,...
    • A. Ahmad, O. Al Mushayt, and M. K. Siddiqui, “Total edge irregularity strength of strong product of cycles and paths”, Scientific Bulletin...
    • A. Ahmad, M. K. Siddiqui, and D. Afzal, “On the total edge irregularity strength of zigzag graphs”, Australasian journal of combinatorics,...
    • M. Anholcer and C. Palmer, “Irregular labelings of circulant graphs”, Discrete mathematics, vol. 312, no. 23, pp. 3461-3466, 2012. https://doi.org/10.1016/j.disc.2012.06.017
    • M. Bača, S. Jendro’l, M. Miller, and J. Ryan, “On irregular total labellings”, Discrete mathematics, vol. 307, no. 11-12, pp. 1378-1388, 2007....
    • M. Bača, and M. K. Siddiqui, “Total edge irregularity strength of generalized prism”, Applied mathematics and computation, vol. 235, pp. 168-173,...
    • G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, and F. Saba, “Irregular networks”, Congressus numerantium, vol. 64, 1988,...
    • C. Tong, L. Xiaohui, Y. Yuansheng, and W. Liping, “Irregular total labellings of Cm⎕Cn”, Utilitas mathematica, vol. 81, pp. 3-13, 2010.
    • C. Tong, L. Xiaohui, Y. Yuansheng, and W. Liping, “Irregular total labellings of some families of graphs”, Indian journal of pure and applied...
    • J. H. Dimitz, D. K. Garnick and A. Gyárfás, “On the irregularity strength of the m × n grid”, Journal of graph theory, vol. 16, no. 4, pp....
    • J. Ivančo and S. Jendro’l, “Total edge irregularity strength of trees”, Discussiones mathematicae graph theory, vol. 26, no. 3, pp. 449-456,...
    • S. Jendro’l, J. Miškuf, and R. Soták, “Total edge irregularity strength of complete and complete bipartite graphs”, Electronic notes in discrete...
    • S. Jendro’l, J. Miškuf, and R. Soták, “Total edge irregularity strength of complete graphs and complete bipartite graphs”, Discrete mathematics,...
    • C. C. Marzuki, A. N. M. Salman, and M. Miller, “On the total irregularity strength on cycles and paths”, Far East journal of mathematical...
    • J. Miškuf and S. Jendro’l, “On total edge irregularity strength of the grids”, Tatra mountains mathematical publications, vol. 36, pp. 147-151,...
    • Nurdin, E. T. Baskoro, A. N. M. Salman and N. N. Gaos, “On the total vertex irregularity strength of trees”, Discrete mathematics, vol. 310,...
    • R. Ramdani and A. N. M. Salman, “On the total irregularity strength of some cartesian product graphs”, AKCE International journal of graphs...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno