Ir al contenido

Documat


Global existence for vector valued fractional reaction-diffusion equations

  • Basteiro, Agustín [1] ; Rial, Diego [1]
    1. [1] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 2, 2021, págs. 653-680
  • Idioma: inglés
  • DOI: 10.5565/publmat6522108
  • Enlaces
  • Resumen
    • In this paper we study the initial value problem for infinite dimensional fractional non-autonomous reaction-diffusion equations. Applying general time-splitting methods, we prove the existence of solutions globally defined in time using convex sets as invariant regions. We expose examples where biological and pattern formation systems, under suitable assumptions, achieve global existence. We also analyze the asymptotic behavior of solutions.

  • Referencias bibliográficas
    • S. Abdelmalek, Invariant regions and global solutions for reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of diffusion...
    • A. Arnold, L. Desvillettes, and C. Prevost , Existence of nontrivial steady states for populations structured with respect to space and a...
    • Y. Asgari, M. Ghaemi, and M. G. Mahjani, Pattern formation of the FitzHugh–Nagumo model: cellular automata approach, Iran. J. Chem. Chem....
    • B. Baeumer, M. Kovacs, and M. M. Meerschaert ´ , Fractional reproduction dispersal equations and heavy tail dispersal kernels, Bull. Math....
    • S. Bendoukha and S. Abdelmalek, Invariant regions and existence of global solutions to reaction-diffusion systems without conditions on the...
    • J. P. Borgna, M. De Leo, D. Rial, and C. Sanchez de la Vega, General splitting methods for abstract semilinear evolution equations, Commun....
    • C. Bucur and E. Valdinoci, “Nonlocal Diffusion and Applications”, Lecture Notes of the Unione Matematica Italiana 20, Springer, [Cham]; Unione...
    • J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys. 10 (1969), 1862–1868. DOI: 10.1063/1.1664771.
    • C. Canzi and G. Guerra, A simple counterexample related to the Lie– Trotter product formula, Semigroup Forum 84(3) (2012), 499–504. DOI: 10....
    • J. H. E. Cartwright, R. Montagne, N. Piro, and O. Piro, Fronts between rhythms: spatiotemporal dynamics of extended polyrhythmic media, Phys....
    • T. Cazenave and A. Haraux, “An Introduction to Semilinear Evolution Equations”, Translated from the 1990 French original by Yvan Martel and...
    • K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math....
    • H. Cohen, Nonlinear diffusion problems, in: “Studies in Applied Mathematics”, MAA Studies in Math. 7, Math. Assoc. Amer. (distributed by Prentice-Hall,...
    • M. De Leo, D. Rial, and C. Sanchez de la Vega , High-order timesplitting methods for irreversible equations, IMA J. Numer. Anal. 36(4) (2016),...
    • E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012), 521–573....
    • P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech....
    • R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7(4) (1937), 355–369. DOI: 10.1111/j.1469-1809.1937.tb02153.x.
    • D. A. Frank-Kamenetskii, “Diffusion and Heat Exchange in Chemical Kinetics”, Princeton University Press, Princeton, 1955. DOI: 10.1515/9781400877195.
    • A. Kolmogoroff, I. Petrovsky, and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application...
    • H. Kumar, A. Malik, F. Chand, and S. C. Mishra, Exact solutions of nonlinear diffusion reaction equation with quadratic, cubic and quartic...
    • M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20(1) (2017), 7–51. DOI: 10.1515/fca-2017-0002.
    • N. S. Landkof, “Foundations of Modern Potential Theory”, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen...
    • A. Lischke, G. Pang, M. Gulian, et al., What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys. 404 (2020),...
    • J. T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16(3) (2011), 1140–1153....
    • S. Meftah and L. Nisse, Invariant sets for non classical reaction-diffusion systems, Glob. J. Pure Appl. Math. 12(6) (2016), 5105–5117.
    • J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal. 20(5) (1989), 1128–1144. DOI: 10.1137/0520075.
    • J. D. Murray, “Lectures on Nonlinear Differential Equation Models in Biology”, Oxford University Press, Oxford, 1977.
    • C. Pozrikidis, “The Fractional Laplacian”, CRC Press, Boca Raton, FL, 2016. DOI: 10.1201/b19666.
    • J. C. Robinson, A. Rodr´ıguez-Bernal, and A. Vidal-Lopez ´ , Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion...
    • K. Sato, “Levy Processes and Infinitely Divisible Distributions”, Translated from the 1990 Japanese original, Revised by the author, Cambridge...
    • L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Thesis (Ph.D.)-The University of Texas at...
    • A. Slavık, Invariant regions for systems of lattice reaction-diffusion equations, J. Differential Equations 263(11) (2017), 7601–7626. DOI:...
    • J. Smoller, “Shock Waves and Reaction-Diffusion Equations”, Grundlehren der Mathematischen Wissenschaften 258, Springer-Verlag, New York-Berlin,...
    • H. C. Tuckwell, “Introduction to Theoretical Neurobiology. Vol. 2. Nonlinear and Stochastic Theories”, Cambridge Studies in Mathematical Biology...
    • J. R. Weimar and J.-P. Boon, Class of cellular automata for reaction-diffusion systems, Phys. Rev. E 49(2) (1994), 1749–1752. DOI: 10.1103/PhysRevE.49....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno