Ir al contenido

Documat


Structure monoids of set-theoretic solutions of the Yang-Baxter equation

  • Cedó Giné, Ferran [1] Árbol académico ; Jespers, Eric [2] Árbol académico ; Vermwimp, Charlotte [2]
    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Vrije Universiteit Brussel

      Vrije Universiteit Brussel

      Arrondissement Brussel-Hoofdstad, Bélgica

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 2, 2021, págs. 499-528
  • Idioma: inglés
  • DOI: 10.5565/publmat6522104
  • Enlaces
  • Resumen
    • Given a set-theoretic solution (X, r) of the Yang–Baxter equation, we denote by M = M(X, r) the structure monoid and by A = A(X, r), respectively A0 = A0 (X, r), the left, respectively right, derived structure monoid of (X, r). It is shown that there exist a left action of M on A and a right action of M on A0 and 1-cocycles π and π 0 of M with coefficients in A and in A0 with respect to these actions, respectively. We investigate when the 1-cocycles are injective, surjective, or bijective. In case X is finite, it turns out that π is bijective if and only if (X, r) is left non-degenerate, and π 0 is bijective if and only if (X, r) is right non-degenerate. In case (X, r) is left non-degenerate, in particular π is bijective, we define a semi-truss structure on M(X, r) and then we show that this naturally induces a set-theoretic solution (M, r) on the least cancellative image M = M(X, r)/η of M(X, r). In case X is naturally embedded in M(X, r)/η, for example when (X, r) is irretractable, then r is an extension of r. It is also shown that non-degenerate irretractable solutions necessarily are bijective.

  • Referencias bibliográficas
    • D. Bachiller, Solutions of the Yang–Baxter equation associated to skew left braces, with applications to racks, J. Knot Theory Ramifications...
    • D. Bachiller, F. Cedo, and E. Jespers ´ , Solutions of the Yang–Baxter equation associated with a left brace, J. Algebra 463 (2016), 80–102....
    • D. Bachiller, F. Cedo, and L. Vendramin ´ , A characterization of finite multipermutation solutions of the Yang–Baxter equation, Publ. Mat....
    • T. Brzezinski , Towards semi-trusses, Rev. Roumaine Math. Pures Appl. 63(2) (2018), 75–89. [5] F. Cedo, E. Jespers, and J. Okninski , Braces...
    • F. Cedo and J. Okninski , Grobner bases for quadratic algebras of skew type, Proc. Edinb. Math. Soc. (2) 55(2) (2012), 387–401. DOI: 10.1017/S00130915...
    • F. Chouraqui, Garside groups and Yang–Baxter equation, Comm. Algebra 38(12) (2010), 4441–4460. DOI: 10.1080/00927870903386502.
    • F. Chouraqui, Left orders in Garside groups, Internat. J. Algebra Comput. 26(7) (2016), 1349–1359. DOI: 10.1142/S0218196716500570.
    • K. Cvetko-Vah and C. Verwimp, Skew lattices and set-theoretic solutions of the Yang–Baxter equation, J. Algebra 542 (2020), 65–92. DOI: 10.1016/j....
    • P. Dehornoy, Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs, Adv. Math. 282 (2015), 93–127. DOI: 10.1016/j.aim.2015....
    • V. G. Drinfeld, On some unsolved problems in quantum group theory, in: “Quantum Groups” (Leningrad, 1990), Lecture Notes in Math. 1510, Springer,...
    • P. Etingof, T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang–Baxter equation, Duke Math. J. 100(2) (1999), 169–209....
    • T. Gateva-Ivanova, Quadratic algebras, Yang–Baxter equation, and Artin– Schelter regularity, Adv. Math. 230(4–6) (2012), 2152–2175. DOI: 10.1016/j....
    • T. Gateva-Ivanova and P. Cameron, Multipermutation solutions of the Yang– Baxter equation, Comm. Math. Phys. 309(3) (2012), 583–621. DOI:...
    • T. Gateva-Ivanova, E. Jespers, and J. Okninski ´ , Quadratic algebras of skew type and the underlying monoids, J. Algebra 270(2) (2003), 635–659....
    • T. Gateva-Ivanova and S. Majid, Matched pairs approach to set theoretic solutions of the Yang–Baxter equation, J. Algebra 319(4) (2008), 1462–1529....
    • T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra 206(1) (1998), 97–112. DOI: 10.1006/jabr.1997.7399.
    • L. Guarnieri and L. Vendramin, Skew braces and the Yang–Baxter equation, Math. Comp. 86(307) (2017), 2519–2534. DOI: 10.1090/mcom/3161.
    • E. Jespers, L. Kubat, and A. Van Antwerpen, The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter...
    • E. Jespers and J. Okninski ´ , Monoids and groups of I-type, Algebr. Represent. Theory 8(5) (2005), 709–729. DOI: 10.1007/s10468-005-0342-7.
    • E. Jespers and J. Okninski ´ , “Noetherian Semigroup Algebras”, Algebra and Applications 7, Springer, Dordrecht, 2007. DOI: 10.1007/1-4020-5810-1.
    • E. Jespers, J. Okninski, and M. Van Campenhout ´ , Finitely generated algebras defined by homogeneous quadratic monomial relations and their...
    • E. Jespers and M. Van Campenhout, Finitely generated algebras defined by homogeneous quadratic monomial relations and their underlying monoids...
    • V. Lebed and L. Vendramin, On structure groups of set-theoretic solutions to the Yang–Baxter equation, Proc. Edinb. Math. Soc. (2) 62(3) (2019),...
    • J.-H. Lu, M. Yan, and Y.-C. Zhu, On the set-theoretical Yang–Baxter equation, Duke Math. J. 104(1) (2000), 1–18. DOI: 10.1215/S0012-7094-00-10411-5.
    • W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation, Adv. Math. 193(1) (2005), 40–55. DOI:...
    • W. Rump, Braces, radical rings, and the quantum Yang–Baxter equation, J. Algebra 307(1) (2007), 153–170. DOI: 10.1016/j.jalgebra.2006.03.040.
    • W. Rump, The brace of a classical group, Note Mat. 34(1) (2014), 115–144. DOI: 10.1285/i15900932v34n1p115.
    • W. Rump, A covering theory for non-involutive set-theoretic solutions to the Yang–Baxter equation, J. Algebra 520 (2019), 136–170. DOI: 10.1016/j....
    • A. Smoktunowicz and L. Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2(1) (2018), 47–86. DOI:...
    • A. Soloviev, Non-unitary set-theoretical solutions to the quantum Yang–Baxter equation, Math. Res. Lett. 7(5) (2000), 577–596. DOI: 10.4310/MRL.2000.v7.n5....
    • M. Takeuchi, Survey on matched pairs of groups—an elementary approach to the ESS-LYZ theory, in: “Noncommutative Geometry and Quantum Groups”...
    • A. Weinstein and P. Xu, Classical solutions of the quantum Yang–Baxter equation, Comm. Math. Phys. 148(2) (1992), 309–343. DOI: 10.1007/BF02100863.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno