Ir al contenido

Documat


Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables

  • Silvia Novo [1] ; Germán Aneiros [1] ; Philippe Vieu [2]
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    2. [2] Paul Sabatier University

      Paul Sabatier University

      Arrondissement de Toulouse, Francia

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 30, Nº. 2, 2021, págs. 481-504
  • Idioma: inglés
  • DOI: 10.1007/s11749-020-00728-w
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper aims to front with dimensionality reduction in regression setting when the predictors are a mixture of functional variable and high-dimensional vector. A flexible model, combining both sparse linear ideas together with semiparametrics, is proposed. A wide scope of asymptotic results is provided: this covers as well rates of convergence of the estimators as asymptotic behaviour of the variable selection procedure. Practical issues are analysed through finite sample-simulated experiments, while an application to Tecator’s data illustrates the usefulness of our methodology.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno