Ir al contenido

Documat


Bootstrapping regression models with locally stationary disturbances

  • Guillermo Ferreira [1] ; Joel Muñoz [1] ; Jorge Mateu [3] ; Jose A. Vilar [2]
    1. [1] Universidad de Concepción

      Universidad de Concepción

      Comuna de Concepción, Chile

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    3. [3] Department of Mathematics, University Jaume I, Castellón, Spain
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 30, Nº. 2, 2021, págs. 341-363
  • Idioma: inglés
  • DOI: 10.1007/s11749-020-00721-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A linear regression model with errors following a time-varying process is considered. In this class of models, the smoothness condition both in the trend function and in the correlation structure of the error term ensures that these models can be locally approximated by stationary processes, leading to a general class of linear regression models with locally stationary errors. We focus here on the bootstrap approximation to the distribution of the least-squares estimator for such class of regression models. We compare and discuss the results on both the classical and bootstrap confidence intervals through an intensive simulation study. The trend is also discussed through a real data analysis on time series of monthly inflation in US with locally stationary errors.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno