Ir al contenido

Documat


Symmetry problems in harmonic analysis

  • Alexander G. Ramm [1]
    1. [1] Kansas State University

      Kansas State University

      City of Manhattan, Estados Unidos

  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 78, Nº. 1, 2021, págs. 155-158
  • Idioma: inglés
  • DOI: 10.1007/s40324-020-00235-w
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Symmetry problems in harmonic analysis are formulated and solved. One of these problems is equivalent to the refined Schiffer’s conjecture which was recently proved by the author. Let k=const>0 be fixed, S2 be the unit sphere in R3, D be a connected bounded domain with C2−smooth connected boundary S, j0(r) be the spherical Bessel function. The harmonic analysis symmetry problems are stated in the following theorems. Theorem A Assume that ∫Seikβ⋅sds=0 for all β∈S2. Then S is a sphere of radius a, where j0(ka)=0. Theorem B Assume that ∫Deikβ⋅xdx=0 for all β∈S2. Then D is a ball.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno